Electrical Properties of Starch Based Silver Ion Conducting Solid Biopolymer Electrolyte

Article Preview

Abstract:

In the present study, the electrical and dielectric properties of a solid biopolymer electrolyte system based on starch doped with different amounts of silver nitrate (AgNO3) were analyzed. The electrolyte system was prepared via solution cast technique. Electrical impedance spectroscopy (EIS) measurement for the system was conducted over a frequency range of 50 Hz - 1 MHz at room temperature. It was found that the sample containing 6 wt.% AgNO3 obtained the highest conductivity value of 1.03 × 10-9 S cm-1. The effect of salt concentration on the dielectric properties of the electrolytes was also studied in relation to the conductivity properties. The dielectric studies indicated that the electrolytes in the present study obeyed non-Debye behavior.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

120-124

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P.V. Wright: Br. Polym. J. Vol. 7 (1975), p.319

Google Scholar

[2] M. Ulaganathan, S.S. Pethaiah and S. Rajendran: Mater. Chem. Phys. Vol. 129 (2011), p.471

Google Scholar

[3] H. Ohno: Electrochim. Acta Vol. 37 (1992), p.1649

Google Scholar

[4] M.F.Z. Kadir, S.R. Majid and A.K. Arof: Electrochim. Acta Vol. 55 (2010), p.1475

Google Scholar

[5] S. Ramesh, C.-W. Liew and A.K. Arof: J. Non-Cryst. Solids Vol. 357 (2011), p.3654

Google Scholar

[6] C.V.S. Reddy, A.K. Sharma and V.V.R.N. Rao: J. Power Sources Vol. 111 (2002), p.357

Google Scholar

[7] A. Biswas, J.L. Willet, S.H. Gordon, V.L. Finkenstadt and N.H. Cheng: Carbohydr. Polym. Vol. 65 (2006), p.397

Google Scholar

[8] S. Chandra, S.A. Hashmi, M. Saleem and R.C. Agrawal: Solid State Ionics Vol. 67 (1993), p.1

Google Scholar

[9] M.L. Kaplan, E.A. Reitman and R.J. Cava: Polymer Vol. 30 (1989), p.504

Google Scholar

[10] S.B. Aziz, Z.H.Z. Abidin and A.K. Arof: Express Polym. Lett. Vol. 4 (2010), p.300

Google Scholar

[11] R.J. Sengwa, S. Choudhary and S. Sankhla: Express Polym. Lett. Vol. 2 (2008), p.800

Google Scholar

[12] C.S. Ramya, S. Selvasekarapandian, T. Savitha, G. Hirankumar, R. Baskaran, M.S. Bhuvaneswari and P.C. Angelo: Eur. Polym. J. Vol. 42 (2006), p.2672

DOI: 10.1016/j.eurpolymj.2006.05.020

Google Scholar

[13] Y. Li and R. Qian: Synth. Met. Vol. 160 (2010), p.1040

Google Scholar

[14] S. Selvasekarapandian, G. Hirankumar, J. Kawamura, N. Kuwata and T. Hattori: Mater. Lett. Vol. 59 (2005), p.2741

Google Scholar

[15] A.S.A. Khiar and A.K. Arof: Ionics Vol. 16 (2010), p.123

Google Scholar

[16] A. Chagnes, H. Allouchi, B. Carre, G. Odou, P. Willmann and D. Lemordant: J. Appl. Electrochem. Vol. 33 (2003), p.589

DOI: 10.1023/a:1024904918401

Google Scholar

[17] K. Ramly, M.I.N. Isa and A.S.A. Khiar: Mater. Res. Innov. Vol. 15 (2011), p. S82

Google Scholar

[18] S. Ramesh, T.F. Yuen and C.J. Shen: Spectrochim. Acta A Vol. 69 (2008), p.670

Google Scholar

[19] A. Abdullah, S.Z. Abdullah, A.M.M. Ali, T. Winie, M.Z.A. Yahya and R.H.Y. Subban: Mater. Res. Innov. Vol. 13 (2009), p.255

Google Scholar