Electronic Structure of Defects in SnTe

Article Preview

Abstract:

My ab initio electronic structure calculations in RSn2n-1Te2n, n=16, R = a vacancy, Cd, and In show that when Sn atom is substituted by R, the Density of State (DOS) of the valence and conduction bands get strongly perturbed. There are significant changes near the band gap region. Sn vacancy causes very little change near the bottom of the conduction band DOS whereas there is an increase in the DOS near the top of the valence band. Results for In impurity shows that, unlike PbTe, the deep defect states in SnTe are resonant states near the top of the valence band. In PbTe these deep defect states lie in the band-gap region (act as n-type). This fundamental difference in the position of the deep defect states in SnTe and PbTe explains the experimental anomalies seen in the case of In impurities (act as n-type in PbTe and p-type in SnTe).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

125-130

Citation:

Online since:

May 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Ahmad, K. Hoang, and S. D. Mahanti, Phys. Rev. Lett. 96, 056403 (2006); 96, 169907(E) (2006).

Google Scholar

[2] D. Bilc, S. D. Mahanti, E. Quarez, K.-F. Hsu, R. Pcionek, and M. G. Kanatzidis, Phys. Rev. Lett. 93, 146403 (2004).

Google Scholar

[3] S. D. Mahanti and D. Bilc, J. Phys.: Condens. Matter 16, S5277 (2004).

Google Scholar

[4] S.H. Wei and A. Zunger, Phys. Rev. B 55, 13605 (1997).

Google Scholar

[5] E.A. Albanesi, C.M.I. Okoye, C.O. Rodriguez, E.L.P.Y. Blanca, and A.G. Petukhov, Phys. Rev. B 61, 16589 (2000).

Google Scholar

[6] S. Ahmad, S.D. Mahanti, K. Hoang, and M. G. Kanatzidis, Phys. Rev. B, 74 155205 (2006).

Google Scholar

[7] C. M. I. Okoye, J. Phys.: Condens. Matter 14, 8625 (2002).

Google Scholar

[8] P. J. Lin, W. Saslow and M. L. Cohen, Solid State Commun. 5, 893 (1967).

Google Scholar

[9] F. Herman, R. L. Kortum, I. B. Ortenburger, and J. P. Van Dyke, J. Physique Coll. 29 (Suppl.) C4 62 (1968).

Google Scholar

[10] S. Rabii, Phys. Rev. 182 821 (1969); S. Rabii, Bull. Am. Phys. Soc. 13 413 (1968).

Google Scholar

[11] K. M. Rabe, and J. D. Joannopoulos, Phys. Rev. B 32 2302 (1985).

Google Scholar

[12] D. J. Singh, Planewaves, Pseudopotentials, and the LAPW Method (Kluwer Academic, Boston, 1994).

Google Scholar

[13] P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, and J. Luitz, WIEN2k, An Augmented Plane Wave + Local Orbitals Program for Calculating Crystal Properties, edited by Karlheinz Schwarz (Technische Universitat Wien, Austria, 2001).

Google Scholar

[14] J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

Google Scholar

[15] D. D. Koelling and B. Harmon, J. Phys. C 13, 6147 (1980).

Google Scholar

[16] R. F. Bis, and J. R. Dixon, J. Appl. Phys. 40, 1919 (1969).

Google Scholar

[17] L. Esaki, and P. J. Stiles, Phys. Rev. Lett. 16 1108 (1966); L. Esaki, J. Phys. Soc. Japan 21, 589 (1966); R. Tsu, W. E. Howard, L. and Esaki, Phys. Rev. 172, 779 (1968).

DOI: 10.1103/physrevlett.16.1108

Google Scholar

[18] Y. Gelbstein, Z. Dashevsty, and M. P. Daviel, Physica B 363, 196 (2005).

Google Scholar

[19] L. I. Ryabova and D. R. Khokhlov, JETP Lett. 80, 133 (2004).

Google Scholar

[20] C. S. Lent, M. A. Bowen, J. D. Dow, R. S. Allgaiger, O. F. Sankey, and E. S. Ho, Solid State Commun. 61, 83 (1987).

Google Scholar

[21] S A Nemov, Yu I Ravich, Physics-Uspekhi 41 (8) 735 (1998).

Google Scholar