Synthesis of VTES/SBA-15 Prepared by Post-Grafting: XRD Characteristics on the Effect of Calcination Properties

Article Preview

Abstract:

Functionalization of Santa Barbara Amorphous-15 (SBA-15) with vinyltriethoxysilane (VTES) via post-grafting method has been synthesized with the effect of calcination time span and temperature range. X-ray powder diffraction has been a means to evident the incorporation of VTES functional groups and to characterize the peak diffraction pattern. The samples of parent SBA-15 have been treated in different calcination temperature and time, ranging from 400°C to 800°C and 2 hr to 8 hr, respectively. The XRD results show that two dimensional p6mm of high order hexagonal mesoscopic structure of VTES/SBA-15 could not be retained at higher temperature of calcination than 700°C. However, the higher time spans of calcination up to 8 hrs preserve the long-range order of functionalized SBA-15.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

103-107

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Zhao, J. Feng, Q. Huo, N. Melosh, G.H. Fredrickson, B.F. Chmelka, G.D. Stucky: Science 279 (1998), p.548.

Google Scholar

[2] P.F. Siril, N.R. Shiju, D.R. Brown, K. Wilson: Applied Catalysis A: General 364 (2009), p.95.

Google Scholar

[3] H. Huang, C. Yang, H. Zhang, M. Liu: Microporous and Mesoporous Materials 111 (2008), p.254.

Google Scholar

[4] A.L. Doadrio, E.M.B. Sousa, J.C. Doadrio, J. Perez Pariente, I. Izquierdo-Barba, M. Vallet-Regi: Journal of Controlled Release 97 (2004), p.125.

DOI: 10.1016/j.jconrel.2004.03.005

Google Scholar

[5] L. Wang, Y. Shao, J. Zhang, M. Anpo: Optical Materials 28 (2006), p.1232.

Google Scholar

[6] Q. Qi, T. Zhang, X. Zheng, L. Wan: Sensors and Actuators B: Chemical 135 (2008), p.255.

Google Scholar

[7] B.S. Liu, X.N. Wei, Y.P. Zhan, R.Z. Chang, F. Subhan, C.T. Au: Applied Catalysis B: Environmental 102 (2011), p.27.

Google Scholar

[8] T. Jiang, H. Tao, J. Ren, X. Liu, Y. Wang, G. Lu: Microporous and Mesoporous Materials 142 (2011), p.341.

Google Scholar

[9] J.A. Melero, G.D. Stucky, R. van Grieken, G. Morales: Journal of Materials Chemistry 12 (2002), p.1664.

Google Scholar

[10] D. Zhao, Q. Huo, J. Feng, B.F. Chmelka, G.D. Stucky: Journal of the American Chemical Society 120 (1998), p.6024.

Google Scholar

[11] A.S. Maria Chong, X.S. Zhao, A.T. Kustedjo, S.Z. Qiao: Microporous and Mesoporous Materials 72 (2004), p.33.

DOI: 10.1016/j.micromeso.2004.04.015

Google Scholar

[12] J.A. Bae, S.H. Hwang, K.-C. Song, J.-K. Jeon, Y.S. Ko, J.-H. Yim: Journal of Nanoscience and Nanotechnology 10 (2010), p.290.

Google Scholar

[13] X.-L. Wang, A. Mei, M. Li, Y. Lin, C.-W. Nan: Solid State Ionics 177 (2006), p.1287.

Google Scholar

[14] B. Rac, Ã. Molnar, P. Forgo, M. Mohai, I. Bertoti: Journal of Molecular Catalysis A: Chemical 244 (2006), p.46.

Google Scholar

[15] Q. Wei, H.-Q. Chen, Z.-R. Nie, Y.-L. Hao, Y.-L. Wang, Q.-Y. Li, J.-X. Zou: Materials Letters 61 (2007), p.1469.

Google Scholar