Hydrogen Storage Investigation of Fixed Bed of Nanocrystalline Mg-Ni-Cr Mixed Oxides

Article Preview

Abstract:

nanocrystalline mixed oxides containing magnesium, nickel and chromium (MNCM) have been synthesized as an adsorbent using coprecipitation method and showed its reversible hydrogen storage capacity at ambient conditions using fixed bed. XRD and ICP-MS analyses ensured the adsorbents phase and homogeneity. The microstructure of mixed oxide has been investigated using FESEM and BET and TEM technique respectively. The adsorbent consisted of mesoporous surface with a surface area of 254-370 m2gm-1 and SAED pattern showed that the adsorbents are poly-crystalline. The mixed oxides exhibited a 3.2 wt% H2 storage capacity and release 57% of adsorbed H2. Adsorption enthalpy (H) and entropy (S) change of-27.58 kJ/mol and-70.21 J/mol.K are indicating favorable thermodynamics for reversible hydrogen storage material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

179-183

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Leslie, D. Mircea, R.L. Jeffrey, Chem. Soc. Rev., 38 (2009), 1294–1314.

Google Scholar

[2] M.K. Thomas, Catalysis today 20 (2007), 389 -398.

Google Scholar

[3] M. A. Salam, Y. Lwin, S. Suriati, Adv. Mat. Res. 626 (2013), 173-177

Google Scholar

[4] M.A. Salam, S. Suriati Y. Lwin, J. Phys. Chem. Solids 74 (2013) 558–564

Google Scholar

[5] F. Bergaya, B.K.G Theng, G. Lagaly, Handbook of Clay Science, Developments in Clay Science. Elsevier, Amsterdam; 2006,1,pp-1224

DOI: 10.1016/s1572-4352(05)01007-x

Google Scholar

[6] Z. M. Ni, W. H. Yu, S. F. Zhao, H. G. Zhong, Chin. Chem Lett. 15(8), (2004), 989-992.

Google Scholar

[7] L. Zhao, X. Li, X. Quan, G. Chen, Env. Sci. tech. 45 (2011), 5373-5379

Google Scholar

[8] A. Zuttel, C. Nutzenadel, P. Sudan, P. Mauron, C. Emmenegger, S. Rentsch, Journal of Alloys and Comp. 330–332 (2002), 676–682

Google Scholar

[9] M.G. Nijkamp, J.E.M.J Raaymakers, A.J. Dillen, K.P. Jong, Appl. Phys. A 72 (2001), 619–623

Google Scholar

[10] S.H. Jhi, Y.K. Kwon, K. Bradley, J.C.P Gabriel, Solid state communication 129 (2004),769-773

Google Scholar

[11] J. Z. Larese, T. Arnold, L . Frazier, R.J. Hinde, A.J. Ramirez-Cuesta PRL 101 (2008) 165302

Google Scholar

[12] E. N. Logunova, A. Ya. Chernyak, Chem. Petro.Eng.43, (2007), 197-201

Google Scholar

[13] C.C. Rodrigues, M. J. Deovaldo, S.W. Nobrega, M. G. Barboza Bioresource Technology 98 (2007), 886-891

Google Scholar

[14] X.Z. Li, Quantitative analysis of polycrystalline electron diffraction patterns, Microanalysis and Microscopy 2007.

Google Scholar

[15] K. Tanaka,Y. Kanda, M. Furuhashi, K. Saito, K. Kuroda, H. Saka, J Alloys Comp. 293 (1999), 521

Google Scholar

[16] G.Grevillot, S.Marsteau, C. Vallieres,J. Occup.Environ.Hygiene 8,(2011), 279-288

Google Scholar

[17] J.T. Kloprogge, R.L. Frost, J solid state chem. 146 (1999), 506C

Google Scholar

[18] R. J. Sibley , R. A. Alberty, Physical Chemistry. 3rd Ed. Wiley.Newyork, 2001.

Google Scholar

[19] Y. Lwin, F. Abdullah , J Therm Anal Calorim 97(2009), 885-889.

Google Scholar

[20] S. K. Bhatia, A. L Myers, Langmuir, 22 (2006),1688-1700.

Google Scholar

[21] C. P. Baldé, Hereijgers, B. P. C. Bitter, K. P. Jong, Angew. Chem. Int. Ed. 45 (2006), 3501-3503.

DOI: 10.1002/anie.200504202

Google Scholar

[22] M. Dincǎ, J. R. Long, J. Am. Chem. Soc.,129 (36), (2007) 11172–11176

Google Scholar