The Effect of Synthesis Method on the Physico-Chemical Properties of Magnetite Iron Oxide Nanoparticles

Article Preview

Abstract:

Superparamagnetic iron oxide nanoparticles were synthesized using co-precipitation, hydrothermal and ultrasonic routes from Fe2+/Fe3+ ions and NaOH. The average diameter for the sample prepared using co-precipitation, hydrothermal and ultrasonic method is 33, 9 and 30 nm, respectively with surface area of 85, 117 and 87 m2/g, respectively. Although the results showed all the magnetite nanoparticles were superparamagnetic, but their saturation magnetization and coercitivity are different, depending on the method of synthesis. This study shows that method of synthesis is important that influence the physico-chemical properties of the resulting magnetite iron oxide nanoparticles.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

212-216

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Kayal and R.V. Ramanujan: Mater. Sci. Eng. Vol. C 30 (2010), p.484

Google Scholar

[2] A.K. Gupta, M. Gupta: Biomater. Vol. 26 (2005), p.3995

Google Scholar

[3] O.V. Salata: J. Nanobiotechnol. Vol. 10 (2004), p.1477

Google Scholar

[5] L.R. Hirsch, J.B. Jackson, A. Lee, N.J. Halas, J.L. West: Anal. Chem. Vol. 75 (2003), p.2377

Google Scholar

[6] M.D. Malinsky, K.L. Kelly, G.C. Schatz, R.P. Van Duyne: J. Amer. Chem. Soc. Vol. 123 (2001), p.1471

Google Scholar

[7] M.Brust, M.Walker, D.Bethell, D.Schiffrin, R.Whyman: J. Chem. Soc. Chem. Comm. Vol. 1(1994), p.801

Google Scholar

[8] Z.Xioale, N.Hongyun, P.Yuanyuan, S.Yali, C.Yaqi: Anal. Chem. Vol. 82 (2010), p.2363

Google Scholar

[9] R. Valenzuela, M.C. Fuentes, C. Parra, J. Baeza, N. Duran, S.K. Sharma, M. Knobel, J. Freer: J. Alloys Comp. Vol. 488 (2009), p.227

DOI: 10.1016/j.jallcom.2009.08.087

Google Scholar

[10] K. Donadel, M.D.V. Felisberto, V.T. Fávere, M. Rigoni, N.J. Batistela, M.C.M. Laranjeira: Mater. Sci. Eng. Vol. C 28 (2008), p.509

Google Scholar

[11] Y.S. Kang, S. Risbud, J.F. Rabolt, P. Stroeve: Amer. Chem. Soc. Vol. 8 (1996), p.2209

Google Scholar

[12] J. Liang, L. Li, M. Luo, J. Fang, Y. Hu: Solids State Sci. 12 (2010), p.1422

Google Scholar

[13] G. Marchegiani, P. Imperatori, A. Mari, L. Pilloni, A., P. Allia, P. Tiberto, L. Suber: Ultrasonics Sonochem. Vol. 19 (2012), p.877

DOI: 10.1016/j.ultsonch.2011.12.007

Google Scholar

[14] P. Schneider: Appl. Catal. A: General Vol. 129 (1995), p.157

Google Scholar

[15] R. Tietze, R. Jurgons, S. Lyer, E. Schreiber, F. Wiekhorst, D. Eberdeck, H. Richter, U. Steinhoff, L. Trahms and C. Alexiou: J. Magn. Magnetic Mater. Vol. 321 (2009), p.1465

DOI: 10.1016/j.jmmm.2009.02.068

Google Scholar