Effects of Metal Loading and Milling Time on Hydrogen Storage on Modified Graphite

Article Preview

Abstract:

This paper examines the effect of metal loading (Zr-, V-, Ti-, and K-compounds) on the hydrogen storage property of mechanically milled graphite. The hydrogen adsorption took place at room temperature and 11 MPa measured by thermal volumetric analysis. The results showed that the graphite loaded with ZrCl4 provided a maximum hydrogen storage capacity of 0.6 wt%. Moreover, a milling time of 2 h seems to be the best, offering the highest hydrogen adsorption capacity due to the high specific surface area and the appropriate pore diameter created after the milling. In addition, it was found that the transition metals (ZrCl4 and VCl3) could stabilize the graphite structure and enlarge the gap between the grapheme layers to be suitable trapping sites for hydrogen adsorption. On the other hand, the K2CO3 and TiO2 loaded graphite did not show any improvement for hydrogen adsorption.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

105-110

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H.M. Cheng, Q.H. Yang and C. Liu: Carbon Vol. 39 (2001), p.1447

Google Scholar

[2] L. Zhou: Renew. Sust. Energ. Rev. Vol. 9 (2005), p.395

Google Scholar

[3] A.C. Dillon, K.M. Jones, T.A. Bekkedahl, C.H. Kiang, D.S. Bethune and M.J. Heben: Nature Vol. 386 (1997), p.377

DOI: 10.1038/386377a0

Google Scholar

[4] E. Poirier, R. Chahine and T.K. Bose: Int J Hydrogen Energ. Vol. 26 (2001), p.831

Google Scholar

[5] G. Sandrock, S. Suda and L. Schlapbach: J Alloy. Compd. Vol. 190 (1992), p.57

Google Scholar

[6] A.D. Lueking, R.T. Yang, N.M. Rodriguez and T.K. Baker: Langmuir Vol. 20 (2004), p.714

Google Scholar

[7] E. Terres, B. Panella, T. Hayashi, Y.A. Kim, M. Endo and J.M. Dominguez: Chem. Phys. Lett. Vol. 403 (2005), p.363

Google Scholar

[8] P. Chen, X. Wu, J. Lin and K.L. Tan: Science Vol. 285 (1999) p.91

Google Scholar

[9] R.T. Yang: Carbon Vol. 38 (2000), p.623

Google Scholar

[10] S. Orimo, G. Majer, T. Fukunaga, A. Zuettel, H. Schlapbach and H. Fujii: Appl. Phys. Lett. Vol. 75 (1999), p.3093

Google Scholar

[11] S. Isobe, T. Ichikawa, J.I. Gottwald, E. Gomibuchi and H. Fujii: J. Phys. Chem. Solids Vol. 65 (2004), p.535

Google Scholar

[12] X. Li, H. Zhu, L. Ci, C. Xu, Z. Mao, B. Wei, J. Liang and D. Wu: Carbon Vol. 39 (2001), p. (2077)

Google Scholar