Investigation on Mechanical Properties of Disk Laser Welded Aerospace Alloys

Article Preview

Abstract:

The original micro structure of the base metal is significantly affected by a welding thermal cycle, irrespective of the type of the heat source. Hence, new phases and different grain size result in the welding bead. The tensile strength of the overall structure is affected in turn. Tensile tests are normally conducted to eventually test a square butt joint configuration. In conjunction, micro hardness is thought to be a good indicator to predict where the fracture would occur in the welded structure. Referring to common metal alloys for aerospace and considering a diode-pumped disk-laser source, the response of the base metal to the laser beam is investigated in this paper. Autogenous welding of aluminum alloy 2024, autogenous welding of titanium alloy Ti-6Al-4V and dissimilar welding of Haynes 188 with Inconel 718 are discussed, with respect to micro structure changes in the fused zone and in the heat affected zone. The failure mode is examined.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

128-134

Citation:

Online since:

May 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W.M. Steen, J. Mazumder: Laser Material Processing (Springer-Verlag, London 2010)

Google Scholar

[2] G. Padmanaban, V. Balasubramanian: "Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy", Optics & Laser Technology, vol. 42, pp.1253-1260 (2010)

DOI: 10.1016/j.optlastec.2010.03.019

Google Scholar

[3] A. Giesen: "Results and scaling laws of thin disk lasers", in Proceedings of SPIE 5332, Solid State Lasers: Technology and Devices, Bellingham (2004)

DOI: 10.1117/12.547973

Google Scholar

[4] EN ISO 9015-2: Destructive tests on welds in metallic materials - Hardness test: Part 2 - Micro hardness testing on welded joints (2011)

DOI: 10.3403/00959034

Google Scholar

[5] EN ISO 4136: Destructive tests on weld in metallic materials - Transverse tensile test (2011)

Google Scholar

[6] AWS B4.0: Standard methods for mechanical testing of welds (2007)

Google Scholar

[7] J.R. Davis: Aluminum and Aluminum Alloys (ASM International, Materials Park 1993)

Google Scholar

[8] V. Alfieri, F. Caiazzo, F. Cardaropoli, V. Sergi, "Investigation on porosity content in 2024 aluminum alloy welding by Yb:YAG disk laser", Advanced Material Research, vols. 383-390, pp.6265-6269 (2012)

DOI: 10.4028/www.scientific.net/amr.383-390.6265

Google Scholar

[9] V. Alfieri, F. Caiazzo, F. Cardaropoli, V. Sergi: "Porosity evolution in aluminum alloy 2024 BOP and butt defocused welding by Yb:YAG disk laser", Engineering Review, vol. 31, n. 2, pp.125-132 (2011)

DOI: 10.4028/www.scientific.net/amr.383-390.6265

Google Scholar

[10] F. Caiazzo, V. Alfieri, F. Cardaropoli, V. Sergi: "Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb:YAG disk laser", International Journal of Advanced Manufacturing Technology, in press (2013)

DOI: 10.1007/s00170-012-4637-7

Google Scholar

[11] A.D. Ludovico, G. Daurelio, L.A.C. De Filippis, A. Scialpi, F. Squeo: "Laser welding of the AA 2024-T3 aluminium alloy by using two different laser sources", in Proceedings of SPIE 5777, XV International symposium on gas flow, chemical lasers, and high-power lasers, Prague (2005)

DOI: 10.1117/12.611205

Google Scholar

[12] M.J. Donachie: Titanium, a technical guide (ASM International, Materials Park 2000)

Google Scholar

[13] S.H. Wang, M.D. Wei, L.W. Tsay: "Tensile properties of LBW welds in Ti-6Al-4V alloy at evaluated temperatures below 450 °C", Materials Letters, vol. 57, pp.1815-1823 (2003)

DOI: 10.1016/s0167-577x(02)01074-1

Google Scholar

[14] L.W. Tsay, C.Y. Tsay: "The effect of microstructures on the fatigue crack growth in Ti-6Al-4V laser welds", International Journal of Fatigue, vol. 19, n. 10, pp.713-720 (1997)

DOI: 10.1016/s0142-1123(97)00113-8

Google Scholar

[15] E. Mastrocinque, G. Corrado, F. Caiazzo, N. Pasquino, V. Sergi, F. Acerra: "Disk laser welding of Ti6Al4V alloy", in Proceedings of 21st International Conference on Production Research, Stuttgart (2011)

DOI: 10.4028/www.scientific.net/amr.383-390.6258

Google Scholar

[16] J.R. Davis: Nickel, Cobalt and their Alloys, ASM International, Materials Park (2000)

Google Scholar

[17] G.D. Janaki Ram, A. Venugopal Reddy, K. Prasad Raob, G.M. Reddy, J.K. Sarin Sundard: "Microstructure and tensile properties of Inconel 718 pulsed Nd:YAG laser welds", Journal of Materials Processing Technology, vol. 167, pp.73-82 (2005)

DOI: 10.1016/j.jmatprotec.2004.09.081

Google Scholar

[18] J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim, C.Y. Kang: "Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding", Journal of Materials Processing Technology, vol. 201, p.515–520 (2008)

DOI: 10.1016/j.jmatprotec.2007.11.224

Google Scholar