[1]
W.M. Steen, J. Mazumder: Laser Material Processing (Springer-Verlag, London 2010)
Google Scholar
[2]
G. Padmanaban, V. Balasubramanian: "Optimization of laser beam welding process parameters to attain maximum tensile strength in AZ31B magnesium alloy", Optics & Laser Technology, vol. 42, pp.1253-1260 (2010)
DOI: 10.1016/j.optlastec.2010.03.019
Google Scholar
[3]
A. Giesen: "Results and scaling laws of thin disk lasers", in Proceedings of SPIE 5332, Solid State Lasers: Technology and Devices, Bellingham (2004)
DOI: 10.1117/12.547973
Google Scholar
[4]
EN ISO 9015-2: Destructive tests on welds in metallic materials - Hardness test: Part 2 - Micro hardness testing on welded joints (2011)
DOI: 10.3403/00959034
Google Scholar
[5]
EN ISO 4136: Destructive tests on weld in metallic materials - Transverse tensile test (2011)
Google Scholar
[6]
AWS B4.0: Standard methods for mechanical testing of welds (2007)
Google Scholar
[7]
J.R. Davis: Aluminum and Aluminum Alloys (ASM International, Materials Park 1993)
Google Scholar
[8]
V. Alfieri, F. Caiazzo, F. Cardaropoli, V. Sergi, "Investigation on porosity content in 2024 aluminum alloy welding by Yb:YAG disk laser", Advanced Material Research, vols. 383-390, pp.6265-6269 (2012)
DOI: 10.4028/www.scientific.net/amr.383-390.6265
Google Scholar
[9]
V. Alfieri, F. Caiazzo, F. Cardaropoli, V. Sergi: "Porosity evolution in aluminum alloy 2024 BOP and butt defocused welding by Yb:YAG disk laser", Engineering Review, vol. 31, n. 2, pp.125-132 (2011)
DOI: 10.4028/www.scientific.net/amr.383-390.6265
Google Scholar
[10]
F. Caiazzo, V. Alfieri, F. Cardaropoli, V. Sergi: "Butt autogenous laser welding of AA 2024 aluminium alloy thin sheets with a Yb:YAG disk laser", International Journal of Advanced Manufacturing Technology, in press (2013)
DOI: 10.1007/s00170-012-4637-7
Google Scholar
[11]
A.D. Ludovico, G. Daurelio, L.A.C. De Filippis, A. Scialpi, F. Squeo: "Laser welding of the AA 2024-T3 aluminium alloy by using two different laser sources", in Proceedings of SPIE 5777, XV International symposium on gas flow, chemical lasers, and high-power lasers, Prague (2005)
DOI: 10.1117/12.611205
Google Scholar
[12]
M.J. Donachie: Titanium, a technical guide (ASM International, Materials Park 2000)
Google Scholar
[13]
S.H. Wang, M.D. Wei, L.W. Tsay: "Tensile properties of LBW welds in Ti-6Al-4V alloy at evaluated temperatures below 450 °C", Materials Letters, vol. 57, pp.1815-1823 (2003)
DOI: 10.1016/s0167-577x(02)01074-1
Google Scholar
[14]
L.W. Tsay, C.Y. Tsay: "The effect of microstructures on the fatigue crack growth in Ti-6Al-4V laser welds", International Journal of Fatigue, vol. 19, n. 10, pp.713-720 (1997)
DOI: 10.1016/s0142-1123(97)00113-8
Google Scholar
[15]
E. Mastrocinque, G. Corrado, F. Caiazzo, N. Pasquino, V. Sergi, F. Acerra: "Disk laser welding of Ti6Al4V alloy", in Proceedings of 21st International Conference on Production Research, Stuttgart (2011)
DOI: 10.4028/www.scientific.net/amr.383-390.6258
Google Scholar
[16]
J.R. Davis: Nickel, Cobalt and their Alloys, ASM International, Materials Park (2000)
Google Scholar
[17]
G.D. Janaki Ram, A. Venugopal Reddy, K. Prasad Raob, G.M. Reddy, J.K. Sarin Sundard: "Microstructure and tensile properties of Inconel 718 pulsed Nd:YAG laser welds", Journal of Materials Processing Technology, vol. 167, pp.73-82 (2005)
DOI: 10.1016/j.jmatprotec.2004.09.081
Google Scholar
[18]
J.K. Hong, J.H. Park, N.K. Park, I.S. Eom, M.B. Kim, C.Y. Kang: "Microstructures and mechanical properties of Inconel 718 welds by CO2 laser welding", Journal of Materials Processing Technology, vol. 201, p.515–520 (2008)
DOI: 10.1016/j.jmatprotec.2007.11.224
Google Scholar