[1]
J.F. Wang,H.Z,Yang:Exponential stabiliy of a class of net worked control systems with time delays and packet dropout.Applied Mathematics and Computation.218,8887-8894(2012).
DOI: 10.1016/j.amc.2012.02.047
Google Scholar
[2]
H.Fujioka, Stability analysis for a class of networked/embedded control systems: A discrete-time approach. In: Proc. of the American Control Conf, p.4997–5002 (2008).
DOI: 10.1109/acc.2008.4587286
Google Scholar
[3]
L.Montestruque, P.Antsaklis,Stability of model-based networked control systems with time-varying transmission times. IEEE Trans. Autom. Control, 49(9), 1562–1572 (2004).
DOI: 10.1109/tac.2004.834107
Google Scholar
[4]
P.Naghshtabrizi, J.Hespanha, A.Teel,Exponential stability of impulsive systems with application to uncertain sampled-data systems. Systems & Control Letters 57(5), 378–385(2008).
DOI: 10.1016/j.sysconle.2007.10.009
Google Scholar
[5]
M.Cloosterman, N.van de Wouw, W.Heemels, H.Nijmeijer,Robust stability of networked control systems with time-varying network-induced delays. In: Proc. IEEE Conf. on Decision and Control, p.4980–4985. San Diego, USA (2006).
DOI: 10.1109/cdc.2006.376765
Google Scholar
[6]
M.Cloosterman, N.van de Wouw, W.Heemels, H.Nijmeijer,Stability of networked control systems with uncertain time-varying delays. IEEE Trans. Autom. Control 54(7), 1575–1580 (2009).
DOI: 10.1109/tac.2009.2015543
Google Scholar
[7]
W.Heemels, D.Neˇsi´c, A. Teel, van de Wouw, N,Networked and quantized control systems with communication delays. In: Proc. Joint 48th IEEE Conference on Decision and Control (CDC) and 28th Chinese Control Conference, Shanghai, China, 7929–7935(2009).
DOI: 10.1109/cdc.2009.5400548
Google Scholar
[8]
X.W.Mu,Y.Gao,and W.Zhao.Hybrid Feedback Stabilization of Interval Systems with Quantized Signals(in chinese).Mathematics in Practice and Theory,40(10), 229-234(2010).
Google Scholar