Numerical Simulation of the Multi-Component Slurry Gasification with the Non-Premixed Combustion Model

Article Preview

Abstract:

Considering the volumetric reactions and particle surface reactions in an entrained flow gasifier, the non-premixed combustion model based on the wet particles combustion method is adopted to simulate the multi-component slurry gasification process with FLUENT software. The velocity, temperature and concentration profiles of the gas products in the gasifier are obtained. Simulated results agree well with the commercial data, which verified the validity and applicability of the present model. Simultaneously, the reaction subarea in the gasifier has turned out to be obvious, the water evaporation, volatiles cracking and combustion reactions mainly appear in the jet region of the gasifier, the char gasification mainly appear in the freeboard region, but few reactions appear in the recirculation region. Moreover, with the increase of the mass fraction of the multi-component slurry, the content of the syngas at the gasifier outlet increases, while with the oxygen carbon atom ratio increasing, the syngas yield is rising early but declining later.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

326-331

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Wang, A. Silaen, H.W. Hsu, C.H. Shen, Top fuel injection design in an entrained-flow coal gasifier guided by numerical simulations, J. Therm. Sci. Eng. Appl. 3 (2011) 1009-1017.

DOI: 10.1115/1.4003529

Google Scholar

[2] M.R. Niu, Z.Y. Yan, Q.H. Guo, Q.F. Liang, G.S. Yu, F.C. Wang, Z.H. Yu, Experimental measurement of gas concentration distribution in an impinging entrained-flow gasifier, Fuel Process. Technol. 89 (2008) 1060-1068.

DOI: 10.1016/j.fuproc.2008.04.009

Google Scholar

[3] Z.Y. Deng, R. Xiao, B.S. Jin, H. Huang, L.H. Shen, Q.E. Song, Q.J. Li, Computational fluid dynamics modeling of coal gasification in a pressurized spout-fluid bed, Energy Fuels 22 (2008) 1560-1569.

DOI: 10.1021/ef7007437

Google Scholar

[4] R. Xiao, L.H. Shen, M.Y. Zhang, B.S. Jin, Y.Q. Xiong, Y.F. Duan, Z.P. Zhong, H.C. Zhou, X.P. Chen, Y.J. Huang, Partial gasification of coal in a fluidized bed reactor: Comparison of a laboratory and pilot scale reactors, Korean J. Chem. Eng. 24 (2007) 175-180.

DOI: 10.1007/s11814-007-5028-x

Google Scholar

[5] F. Chejne, J.P. Hernandez, Modelling and simulation of coal gasification process in fluidised bed, Fuel 81 (2002) 1687-1702.

DOI: 10.1016/s0016-2361(02)00036-4

Google Scholar

[6] M.L. Desouzasantos, Comprehensive modeling and simulation of fluidized-bed boilers and gasifiers, Fuel 68 (1989) 1507-1521.

DOI: 10.1016/0016-2361(89)90288-3

Google Scholar

[7] X. Li, J.R. Grace, A.P. Watkinson, C.J. Lim, A. Ergudenler, Equilibrium modeling of gasification: A free energy minimization approach and its application to a circulating fluidized bed coal gasifier, Fuel 80 (2001) 195-207.

DOI: 10.1016/s0016-2361(00)00074-0

Google Scholar

[8] X.J. Liu, W.R. Zhang, T.J. Park, Modeling coal gasification in an entrained flow gasifier, Combust. Theory Model. 5 (2001) 595-608.

Google Scholar

[9] C.X. Chen, M. Horio, T. Kojima, Numerical simulation of entrained flow coal gasifiers. Part I: Modeling of coal gasification in an entrained flow gasifier, Chem. Eng. Sci. 55 (2000) 3861-3874.

DOI: 10.1016/s0009-2509(00)00030-0

Google Scholar

[10] C.X. Chen, M. Horio, T. Kojima, Numerical simulation of entrained flow coal gasifiers. Part II: Effects of operating conditions on gasifier performance, Chem. Eng. Sci. 55 (2000) 3875-3883.

DOI: 10.1016/s0009-2509(00)00031-2

Google Scholar

[11] M. Grabner, S. Ogriseck, B. Meyer, Numerical simulation of coal gasification at circulating fluidised bed conditions, Fuel Process. Technol. 88 (2007) 948-958.

DOI: 10.1016/j.fuproc.2007.05.006

Google Scholar

[12] X.F. Wang, B.S. Jin, W.Q. Zhong, Three-dimensional simulation of fluidized bed coal gasification, Chem. Eng. Process. 48 (2009) 695-705.

DOI: 10.1016/j.cep.2008.08.006

Google Scholar

[13] M.J. Bockelie, K.K. Denison, Z. Chen, T. Linjewile, C.L. Senior, A.F. Sarofim, CFD modeling for entrained flow gasifiers, Proceedings of the Gasification Technologies Conference, San Francisco, CA, October 28-30, 2002.

Google Scholar

[14] C. Guenther, S.E. Zitney, Gasification CFD modeling for advanced power plant simulation, Proceedings of the 22th International Pittsburgh Coal Conference, Pittsburgh, Pennsylvania, September 12, 2005.

Google Scholar

[15] A. Ajilkumar, T. Sundararajan, U.S.P. Shet, Numerical modeling of a steam-assisted tubular coal gasifier, Int. J. Therm. Sci. 48 (2009) 308-321.

DOI: 10.1016/j.ijthermalsci.2008.08.006

Google Scholar

[16] H. Watanabe, M. Otaka, Numerical simulation of coal gasification in entrained flow coal gasifier, Fuel 85 (2006) 1935-1943.

DOI: 10.1016/j.fuel.2006.02.002

Google Scholar

[17] Q. Tang, W. Zhao, M. Bockelie, R.O. Fox, Multi-environment probability density function method for modeling turbulent combustion using realistic chemical kinetics, Combust. Theory Model. 11 (2007) 889-907.

DOI: 10.1080/13647830701268890

Google Scholar

[18] D.G. Roberts, D.J. Harris, Char gasification with O2, CO2, and H2O: Effects of pressure on intrinsic reaction kinetics, Energy Fuels 14 (2000) 483-489.

DOI: 10.1021/ef9901894

Google Scholar