Anodic Plasma Electrolytic Saturation of Steels by Carbon and Nitrogen

Article Preview

Abstract:

Review of results in anodic plasma electrolytic saturation of structural steels with nitrogen and carbon in the aqueous electrolytes containing ammonia chloride and required additional constituents is presented. Proposed nitrohardening technology of the medium-carbon steels includes the short-time nitrogen saturation with the following hardening in the electrolyte. Short-time anodic carburizing possibility of the low-carbon steels with following hardening is shown. Treatment samples microhardness is 630±30 HV, their surface roughness decreases from 1.2 to 0.22 μm.

You might also be interested in these eBooks

Info:

[1] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat. Technol. 122 (1999) 73–93.

DOI: 10.1016/s0257-8972(99)00441-7

Google Scholar

[2] I.V. Suminov, P.N. Belkin, A.V. Apelfeld, V.B. Ludin, A.M. Borisov, Surface plasma electrolytic modification of the metals and alloys, Technosphera, Moscow, 2011, in Russian.

Google Scholar

[3] A. Roy, R.K. Tewari, R.C. Sharma, R. Sherhar, Feasibility study of aqueous electrolyte plasma nitriding, Surface engineering 23(4) (2007) 243–246.

DOI: 10.1179/174329407x215285

Google Scholar

[4] X. Nie, L. Wang, Z.C. Yao, L. Zhang, F. Cheng, Sliding wear behavior of electrolytic plasma nitrided cast iron and steel, Surf. Coat. Technol. 200 (5-6) (2005) 1745–1750.

DOI: 10.1016/j.surfcoat.2005.08.046

Google Scholar

[5] D.J. Shen, Y.L. Wang, P. Nash, G.Z. Xing, A novel method of surface modification for steel by plasma electrolysis carbonitriding, Material Science and Engineering A 458 (2007) 240–243.

DOI: 10.1016/j.msea.2006.12.067

Google Scholar

[6] X. Nie, C. Tsotsos, A. Wilson, A.L. Yerokhin, A. Leyland, A. Matthews, Characteristics of a plasma electrolytic nitrocarburising treatment for stainless steels, Surf. Coat. Technol. 139 (2-3) (2001) 135–142.

DOI: 10.1016/s0257-8972(01)01025-8

Google Scholar

[7] P. Taheri, C. Dehghanian, A phenomenological model of nanocrystalline coating production using the plasma electrolytic saturation (PES) technique, Transaction B: Mechanical Engineering 16 (1) (2009) 87–91.

Google Scholar

[8] H. Pang, G.-L. Zhang, X.Q. Wang, G.-H. Lv, H. Chen, S.-Z. Yang, Mechanical Performances of Carbonitriding Films on Cast Iron by Plasma Electrolytic Carbonitriding, Chin. Phys. Lett. 28(11) (2011) 118103.

DOI: 10.1088/0256-307x/28/11/118103

Google Scholar

[9] M. Tarakci, K. Korkmaz, Y. Gencer, M. Usta, Plasma electrolytic surface carburized and hardening of pure iron, Surf. Coat. Technol. 199 (2-3) (2005) 205—212.

DOI: 10.1016/j.surfcoat.2005.02.117

Google Scholar

[10] M. Aliofkhazraei, C. Morillo, R. Miresmaeli, A. Sabour Rouhaghdam, Carburizing of low-melting-point metals by pulsed nanocrystalline plasma electrolytic carburizing, Surf. Coat. Technol. 202 (2008) 5493–5496.

DOI: 10.1016/j.surfcoat.2008.06.067

Google Scholar

[11] P. Taheri, Ch. Dehghanian, A phenomenological model of nanocrystalline coating production using plasma electrolytic saturation (PES) technique, Transaction B: Mechanical Engineering 16 (1) (2009) 87–91.

Google Scholar

[12] M. Kh. Aliev, A. Sabour, Pulsed nanocrystalline plasma electrolytic boriding as a novel method for corrosion protection of CP-Ti (Part 1: Different frequency and duty cycle), Bull. Mater. Sci. 30 (6) (2007) 601–605.

DOI: 10.1007/s12034-007-0095-5

Google Scholar

[13] P.N. Belkin, V.I. Ganchar, A.D. Davydov, A.I. Dikusar, E.A. Pasinkovskii, Anodic heating in aqueous solutions of electrolytes and its use for treating metal surfaces, Surf. Eng. Appl. Electrochem. (2) (1997) 1–15.

Google Scholar

[14] S. Yu. Shadrin, P.N. Belkin, Analysis of models for calculation of temperature of anode plasma electrolytic heating, Int. J. Heat Mass Trans. 55 (2012) 179–186.

DOI: 10.1016/j.ijheatmasstransfer.2011.09.001

Google Scholar

[15] P.N. Belkin, Anode electrochemical thermal modification of metals and alloys, Surf. Eng. Appl. Electrochem. 46(6) (2010) 558–569.

DOI: 10.3103/s1068375510060049

Google Scholar

[16] M. Aliofkhazraei, P. Taheri, A. Sabour Rouhaghdam, C. Dehghanian, Study of nanocrystalline plasma electrolytic carbonitriding for CP-Ti, Mater. Sc. 43 (6) (2007) 791—799.

DOI: 10.1007/s11003-008-9024-z

Google Scholar

[17] M. Aliofkhazraei, A. Sabour Rouhaghdam, P. Gupta, Nano-Fabrication by Cathodic Plasma Electrolysis, Solid State and Materials Sciences 36 (2011) 174–190.

DOI: 10.1080/10408436.2011.593269

Google Scholar

[18] A.V. Zhirov, A.O. Komarov, V.V. Danilov, S.A. Shorokhov, Effect of Glycerine Concentration on Dissolution and Oxidation of Mild Steel During Anodic Cementation, Surf. Eng. Appl. Electrochem. 48(3) (2012) 289–291.

DOI: 10.3103/s1068375512030143

Google Scholar

[19] S.A. Kusmanov, I.G. Dyakov, P.N. Belkin, Influence of carbonic dopes on electrothermochemical carburizing characteristics, Problems of Material Science (4) (2009) 7–14, in Russian.

Google Scholar

[20] F. Çavuşlu, M. Usta, Kinetics and mechanical study of plasma electrolytic carburizing for pure iron, Applied Surface Science 257 (9) (2011) 4014–4020.

DOI: 10.1016/j.apsusc.2010.11.167

Google Scholar

[21] P.N. Belkin, I.G. Dyakov, A.V. Zhirov, S.A. Kusmanov, and T.L. Mukhacheva, Effect of Compositions of Active Electrolytes on Properties of Anodic Carburization, Prot. Met. Phys. Chem. 46(6) (2010) 715–720.

DOI: 10.1134/s2070205110060158

Google Scholar