Effect of Strain Rate on Mechanical Properties of Pure Iron

Article Preview

Abstract:

Effect of strain rate on mechanical properties of pure iron was studied by compression experiments using Gleebe-1500D thermal simulation testing machine and Split-Hopkinson Pressure Bar, indicating that pure iron only has strain rate hardening effect. Adiabatic temperature rise tends to increase with increasing the strain rate. Work hardening effect is also analyzed. It found that there are only two work hardening regions in static stage (10-3 to 1 s-1) while there are three work hardening regions in dynamic stage (650 to 8500 s-1). It is on account of onset of twining at high strain rates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

21-25

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Nemat-Nasser, W.G. Guo, High strain-rate response of commercially pure vanadium, Mech. Mater. 32 (2000) 243-260.

DOI: 10.1016/s0167-6636(99)00056-3

Google Scholar

[2] C.H. Hsu, S.C. Lee, L.L. Wang, X.L. Dong, The high strain-rate fracture behaviors of gray iron, Mater. Chem. Phys. 73 (2002) 174-178.

DOI: 10.1016/s0254-0584(01)00371-6

Google Scholar

[3] M. Itabashi, K. Kawata, Carbon content effect on high-strain-rate tensile properties, Int. J. Impact Eng. 24 (2000) 117-131.

DOI: 10.1016/s0734-743x(99)00050-0

Google Scholar

[4] W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperature, Mater. Sci. Eng. A 443 (2006) 33-41.

DOI: 10.1016/j.msea.2006.06.041

Google Scholar

[5] J. Tian, S.S. Hu, Research of dynamic mechanical behaviors of G50 steel, Eng. Mechanics 23 (2006) 107-109.

Google Scholar

[6] X.C Wei, Q. Xie, R.Y. Fu, L. Lin, Dynamic deformation behaviors of TRIP-aided multiphase steels, Mater. Sci. Tech. 16 (2008) 625-634.

Google Scholar

[7] D.R. Chichili, K.T. Ramosh, K.J. Hemker, The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling, Acta Mater. 46 (1998) 1025-1043.

DOI: 10.1016/s1359-6454(97)00287-5

Google Scholar

[8] T. L. Altshuler, J. W. Christian, The mechanical properties of pure iron tested in compression over the temperature range 2 to 293 degrees K, Phil. Trans. R. Soc. Lond. A Altshuler (1967) 253-287.

DOI: 10.1098/rsta.1967.0004

Google Scholar

[9] J. Harding, The effect of grain size and strain rate on the lower yield stress of pure iron at 288 K, Acta Metall. 17 (1969) 949-958.

DOI: 10.1016/0001-6160(69)90039-x

Google Scholar

[10] W.P. Bao, Y.Z. Zhao, C.M. Li, X.P. Ren, Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates, J. Mech. Eng. 46 (2010) 74-79.

DOI: 10.3901/jme.2010.04.074

Google Scholar

[11] L. Djapic Oosterkamp, A. Ivankovic, G. Venizelos, High strain rate properties of selected aluminium alloys, Mater. Sci. Eng. A 278 (2000) 225-235.

DOI: 10.1016/s0921-5093(99)00570-5

Google Scholar

[12] S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Mater. Sci. Eng. A 378 (2004) 122-124.

DOI: 10.1016/j.msea.2003.11.059

Google Scholar

[13] X.Y. Hao, G.S. Gai, F.Y. Lu, X.J. Zhao, Y.H. Zhang, J.P. Liu, Y.F. Yang, D.Y. Gui, C.W. Nan, Dynamic mechanical behavior of whiskerPA66 composites at high strain rates, Polymer 46 (2005) 3528-3534.

DOI: 10.1016/j.polymer.2005.02.042

Google Scholar

[14] W.P. Bao, X.P. Ren, H.Q. Jin, Dynamic stress-strain behavior of pure iron for shaped charge liners, J. Univer. Sci. Tech. Beijing 31 (2009) 978-982.

Google Scholar

[15] Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. Qu. Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments, Mater. Sci. Eng. A 530 (2011) 426-431.

DOI: 10.1016/j.msea.2011.09.106

Google Scholar

[16] S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A 527 (2010) 745-751.

DOI: 10.1016/j.msea.2009.08.048

Google Scholar

[17] U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171-273.

DOI: 10.1016/s0079-6425(02)00003-8

Google Scholar

[18] D.B. Santos, A.A. Saleh, A.A. Gazder, A. Carman, D.M. Duarte, E.A.S. Ribeiro, B.M. Gonzalez, E.V. Pereloma, Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel, Mater. Sci. Eng. A 528 (2011) 3545-3555.

DOI: 10.1016/j.msea.2011.01.052

Google Scholar