[1]
S. Nemat-Nasser, W.G. Guo, High strain-rate response of commercially pure vanadium, Mech. Mater. 32 (2000) 243-260.
DOI: 10.1016/s0167-6636(99)00056-3
Google Scholar
[2]
C.H. Hsu, S.C. Lee, L.L. Wang, X.L. Dong, The high strain-rate fracture behaviors of gray iron, Mater. Chem. Phys. 73 (2002) 174-178.
DOI: 10.1016/s0254-0584(01)00371-6
Google Scholar
[3]
M. Itabashi, K. Kawata, Carbon content effect on high-strain-rate tensile properties, Int. J. Impact Eng. 24 (2000) 117-131.
DOI: 10.1016/s0734-743x(99)00050-0
Google Scholar
[4]
W. Huang, X. Zan, X. Nie, M. Gong, Y. Wang, Y.M. Xia, Experimental study on the dynamic tensile behavior of a poly-crystal pure titanium at elevated temperature, Mater. Sci. Eng. A 443 (2006) 33-41.
DOI: 10.1016/j.msea.2006.06.041
Google Scholar
[5]
J. Tian, S.S. Hu, Research of dynamic mechanical behaviors of G50 steel, Eng. Mechanics 23 (2006) 107-109.
Google Scholar
[6]
X.C Wei, Q. Xie, R.Y. Fu, L. Lin, Dynamic deformation behaviors of TRIP-aided multiphase steels, Mater. Sci. Tech. 16 (2008) 625-634.
Google Scholar
[7]
D.R. Chichili, K.T. Ramosh, K.J. Hemker, The high-strain-rate response of alpha-titanium: experiments, deformation mechanisms and modeling, Acta Mater. 46 (1998) 1025-1043.
DOI: 10.1016/s1359-6454(97)00287-5
Google Scholar
[8]
T. L. Altshuler, J. W. Christian, The mechanical properties of pure iron tested in compression over the temperature range 2 to 293 degrees K, Phil. Trans. R. Soc. Lond. A Altshuler (1967) 253-287.
DOI: 10.1098/rsta.1967.0004
Google Scholar
[9]
J. Harding, The effect of grain size and strain rate on the lower yield stress of pure iron at 288 K, Acta Metall. 17 (1969) 949-958.
DOI: 10.1016/0001-6160(69)90039-x
Google Scholar
[10]
W.P. Bao, Y.Z. Zhao, C.M. Li, X.P. Ren, Experimental research on the dynamic constitutive relation of pure iron at elevated temperatures and high strain rates, J. Mech. Eng. 46 (2010) 74-79.
DOI: 10.3901/jme.2010.04.074
Google Scholar
[11]
L. Djapic Oosterkamp, A. Ivankovic, G. Venizelos, High strain rate properties of selected aluminium alloys, Mater. Sci. Eng. A 278 (2000) 225-235.
DOI: 10.1016/s0921-5093(99)00570-5
Google Scholar
[12]
S. Belyaev, A. Petrov, A. Razov, A. Volkov, Mechanical properties of titanium nickelide at high strain rate loading, Mater. Sci. Eng. A 378 (2004) 122-124.
DOI: 10.1016/j.msea.2003.11.059
Google Scholar
[13]
X.Y. Hao, G.S. Gai, F.Y. Lu, X.J. Zhao, Y.H. Zhang, J.P. Liu, Y.F. Yang, D.Y. Gui, C.W. Nan, Dynamic mechanical behavior of whiskerPA66 composites at high strain rates, Polymer 46 (2005) 3528-3534.
DOI: 10.1016/j.polymer.2005.02.042
Google Scholar
[14]
W.P. Bao, X.P. Ren, H.Q. Jin, Dynamic stress-strain behavior of pure iron for shaped charge liners, J. Univer. Sci. Tech. Beijing 31 (2009) 978-982.
Google Scholar
[15]
Z.P. Xiong, X.P. Ren, W.P. Bao, S.X. Li, H.T. Qu. Dynamic mechanical properties of the Fe-30Mn-3Si-4Al TWIP steel after different heat treatments, Mater. Sci. Eng. A 530 (2011) 426-431.
DOI: 10.1016/j.msea.2011.09.106
Google Scholar
[16]
S. Kang, Y.S. Jung, J.H. Jun, Y.K. Lee, Effects of recrystallization annealing temperature on carbide precipitation, microstructure, and mechanical properties in Fe-18Mn-0.6C-1.5Al TWIP steel, Mater. Sci. Eng. A 527 (2010) 745-751.
DOI: 10.1016/j.msea.2009.08.048
Google Scholar
[17]
U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case, Prog. Mater. Sci. 48 (2003) 171-273.
DOI: 10.1016/s0079-6425(02)00003-8
Google Scholar
[18]
D.B. Santos, A.A. Saleh, A.A. Gazder, A. Carman, D.M. Duarte, E.A.S. Ribeiro, B.M. Gonzalez, E.V. Pereloma, Effect of annealing on the microstructure and mechanical properties of cold rolled Fe-24Mn-3Al-2Si-1Ni-0.06C TWIP steel, Mater. Sci. Eng. A 528 (2011) 3545-3555.
DOI: 10.1016/j.msea.2011.01.052
Google Scholar