Research of Cr1-xMxN's (M=Al,V,Ti,etc.,x=0.5) Coating Valence Electron Structure Calculation and Wear-Resisting Performance

Article Preview

Abstract:

Based on empirical electron theory of solid and molecule (EET, Empirical Electron Theory of Solids and Molecules) ,this paper calculated the Cr1 – xMxN molecular coating’s valence electron structure of the phase space and the valence electron structure of coating matrix phase out of phase interface. By analysing microscopic valence electron structure, we discussed the alloy elements’ influence on this series of coatings’ resistance. And we found that V elements can significantly increase the metal chromium nitride’s were resistance , element Ti takes the second place, element Al also has some effect.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 706-708)

Pages:

238-243

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.A. Zhang, P.X. Yan, P. Wang, Y.M. Chen, J.Y. Zhang. The structure and tribological behaviors of CrN and Cr–Ti–N coatings[J]. Appl. Surf. Sci.. 2007, 253: 7353.

DOI: 10.1016/j.apsusc.2007.02.061

Google Scholar

[2] S.R. Pulugurtha, D.G.. Bhat, M. H. Gordon, J. Shultz, etc.. Mechanical and tribological properties of compositionally graded CrAlN films deposited by AC reactive magnetron sputtering[J]. Surf. & coat. Tech. 2007, 202:1160.

DOI: 10.1016/j.surfcoat.2007.07.060

Google Scholar

[3] M. Uchida, N. Nihira, A. Mitsuo, K. Toyoda, K. Kubota, T. Aizawa. Friction and Wear Properties of CrAlN and CrVN films deposited by cathodic arc ion plating method[J]. Surf. & Coat. Tech. 2004,117-178:627.

DOI: 10.1016/s0257-8972(03)00937-x

Google Scholar

[4] Xiao-zhao Ding, A.L.K. Tan, X.T. Zeng, C. Wang, T. Yue, C.Q. Sun. Corrosion resistance of CrAlN and TiAlN coatings deposited by lateral rotating cathode arc[J]. Thin Solid Film. 2008, 516: 5716.

DOI: 10.1016/j.tsf.2007.07.069

Google Scholar

[5] J.L. Endrino, S. Palacin, M.H. Aguirre, etc. Determination of the local environment of silicon and the microstructure of quaternary CrAl(Si)N films.Acta Materialia. 2007, 55:2129.

DOI: 10.1016/j.actamat.2006.11.014

Google Scholar

[6] D. H. Jung, H.S. Park, H.D. Na, J.W. Lim, etc.. Mechanical properties of (Ti,Cr)N coatings deposited by inductively coupled plasma assisted direct current magnetron sputtering[J]. Surf. & Coat. Tech. 2003, 169-170: 424-427.

DOI: 10.1016/s0257-8972(03)00146-4

Google Scholar

[7] S.M. Aouadi, K.C. Wong, K.A.R. Mitchell, etc. Characteriization of titanium chromium nitride nanocomposite protective coatings[J]. Appl. Surf. Sci.. 2004, 229:387-394.

DOI: 10.1016/j.apsusc.2004.02.019

Google Scholar

[8] M.A. Baker, P.J. Kench, M.C Joseph, etc.. Surf. Coat. Technol.. 2003, 162:222.

Google Scholar

[9] Fan-Bean Wu, Shih-Kang Tien, Jyh-Wei Lee, etc.. Comparison in microstructure and mechanical properties of nanocomposite CrWN and nanolayered CrN/WN coatings[J]. Surf. & Coat. Technol.. 2006, 200: 3194-3198.

DOI: 10.1016/j.surfcoat.2005.07.042

Google Scholar

[10] M. Cekada, P. Panjan, B. Navinsek, etc. Vacuum. 1999, 52:461.

Google Scholar