ScanSAR Mode Sea Ice Image Segmentation

Article Preview

Abstract:

Non-stationary nature of the SAR image is a major obstacle to the automatic interpretation of SAR sea ice image. Incidence angle effect is one of the main factors leading to instability in the sea ice image features. Wide observation with automatic interpretation of SAR sea ice image,incidence angle effect on sea ice region, considering the speckle noise, the incidence angle effect and uncertainties, to the region through the pixel and then to large-scale regional a way, the merger of the incident angle effect correction on the scale of the regional clustering, class and regional operating combination of up to improve the segmentation algorithm for non-stationary adaptability.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

675-678

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Karvonen A J. 2004. Baltic Sea ice SAR segmentation and classification using modified pulse-coupled neural networks. IEEE Transactions on Geoscience and Remote Sensing, 42(7): 1566-1574

DOI: 10.1109/tgrs.2004.828179

Google Scholar

[2] Clausi, D.A., Qin, K., Chowdhury, M.S., Yu, P. Maillard, P. 2010. MAGIC:MAp-Guided Ice Classification, Canadian Journal of Remote Sensing, 36(1):S13-S25

DOI: 10.5589/m10-008

Google Scholar

[3] L. K. Soh,C. Tsatsoulis,D. Gineris and C. Bertoia. 2004. ARKTOS:An intelligent system for SAR sea ice image classification. IEEE Trans. Geosci Remote Sensing, 42 (1):229-248

DOI: 10.1109/tgrs.2003.817819

Google Scholar

[4] Mäkynen M P, Manninen A T, Similä M H, Karvonen A J and Martti T H. 2002. Incidence angle dependence of the statistical properties of C-Band HH-Polarization backscattering signatures of the Baltic sea ice. IEEE Transaction on Geoscience and Remote Sensing, 40(12): 2593-2605

DOI: 10.1109/tgrs.2002.806991

Google Scholar

[5] Oliver, C. and S. Quegan. 2004. Understanding Synthetic Aperture Radar Images, SciTech Pub., Raleigh, NC, p.197

Google Scholar

[6] A. Reigber, M. Jäger, M. Neumann, L. Ferro-Famil: Polarimetric fuzzy k-Means classification with consideration of spatial context, Proceedings of POLINSAR'07, Frascati, Italy, January 2007.

Google Scholar

[7] Beckers, A.L.D., de Bruijn, W.C., Gelsema, E.S., Cleton-Soteman, M.I. & van Eijk, H.G. 1994. Quantitative electron spectroscopic imaging in bio-medicine: methods for image acquisition, correction and analysis. J. Microsc. 174, 171-182.

DOI: 10.1111/j.1365-2818.1994.tb03465.x

Google Scholar

[8] Press W.H.,S.A. Teukolsky, W.T. Vetterling B.P. Flannery. 2007. Numerical Recipes, The Art of Scientific Computing, Cambridge University Press, Cambridge, p.842

DOI: 10.1086/416228

Google Scholar