Incremental Tensor Discriminant Analysis for Image Detection

Article Preview

Abstract:

In order to settle incremental learning and preserve the space information of images, this paper proposes an incremental tensor discriminant analysis for facial image detection. The proposed algorithm employs tensor representation to preserve the structure information and introduces the incremental learning to solve the on-line learning for new added samples. The experiments have shown that our method achieves better classification performance and reduces the computational cost effectively compared with other algorithms.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

579-583

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. Fisher, The use of multiple measures in taxonomic problems, Annals of Eugenics, 7:179-188, 1936.

Google Scholar

[2] C. Rao, The utilization of multiple measurements in problems of biological classification, Journal of the Royal Statistical Society. Series B (Methodological), 10:159-203, 1948.

DOI: 10.1111/j.2517-6161.1948.tb00008.x

Google Scholar

[3] G. F. Lu, J. Zou, and Y. Wang, Incremental learning of complete linear discriminant analysis for face recognition, Knowledge-Based Systems, 2012.

DOI: 10.1016/j.knosys.2012.01.016

Google Scholar

[4] G. F. Lu, J. Zou, and Y. Wang, Incremental learning of discriminant common vectors for feature extraction, Applied Mathematics and Computation, 2012.

DOI: 10.1016/j.amc.2012.05.019

Google Scholar

[5] A. Joseph, Y. M. Jang, S. Ozawa, and M. Lee, "Extension of incremental linear discriminant analysis to online feature extraction under nonstationary environments," in Neural Information Processing, 2012, pp.640-647.

DOI: 10.1007/978-3-642-34481-7_78

Google Scholar

[6] Q. Wang and L. Zhang, Least squares online linear discriminant analysis, Expert Systems with Applications, 39(1):1510-1517, 2012.

DOI: 10.1016/j.eswa.2011.08.042

Google Scholar

[7] G. F. Lu, J. Zou, and Y. Wang, Incremental complete LDA for face recognition, Pattern Recognition, 2012.

DOI: 10.1016/j.patcog.2012.01.018

Google Scholar

[8] H. Lu, K. N. Plataniotis, and A. N. Venetsanopoulos, Uncorrelated multilinear discriminant analysis with regularization and aggregation for tensor object recognition, Neural Networks, IEEE Transactions on, 20(1):103-123, 2009.

DOI: 10.1109/tnn.2008.2004625

Google Scholar

[9] C. Liu, K. He, J. Zhou, and C. B. Gao, Discriminant Orthogonal Rank-One Tensor Projections for Face Recognition, Intelligent Information and Database Systems:203-211, 2011.

DOI: 10.1007/978-3-642-20042-7_21

Google Scholar

[10] G. Lu, Z. Lin, and Z. Jin, Face recognition using discriminant locality preserving projections based on maximum margin criterion, Pattern Recognition, 2010.

DOI: 10.1016/j.patcog.2010.04.007

Google Scholar

[11] D. Tao, X. Li, X. Wu, and S. Maybank, General Tensor Discriminant Analysis and Gabor Features for Gait Recognition, IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 29(10):1700-1715, 2007.

DOI: 10.1109/tpami.2007.1096

Google Scholar

[12] F. Nie, S. Xiang, Y. Song, and C. Zhang, Extracting the optimal dimensionality for local tensor discriminant analysis, Pattern Recognition, 42(1):105-114, 2009.

DOI: 10.1016/j.patcog.2008.03.012

Google Scholar

[13] Z. Z. Yu, C. C. Jia, W. Pang, C. Y. Zhang, and L. H. Zhong, Tensor Discriminant Analysis With Multiscale Features for Action Modeling and Categorization, Signal Processing Letters, IEEE, 19(2):95-98, 2012.

DOI: 10.1109/lsp.2011.2180018

Google Scholar

[14] S. J. Wang, J. Yang, M. F. Sun, X. J. Peng, M. M. Sun, and C. G. Zhou, Sparse tensor discriminant color space for face verification, Neural Networks and Learning Systems, IEEE Transactions on, 23(6):876-888, 2012.

DOI: 10.1109/tnnls.2012.2191620

Google Scholar

[15] J. L. Minoi, C. E. Thomaz, and D. F. Gillies, "Tensor-based multivariate statistical discriminant methods for face applications," in Statistics in Science, Business, and Engineering (ICSSBE), 2012 International Conference on, 2012, pp.1-6.

DOI: 10.1109/icssbe.2012.6396626

Google Scholar

[16] N. Tang, X. Gao, and X. Li, Tensor subclass discriminant analysis for radar target classification, Electronics letters, 48(8):455-456, 2012.

DOI: 10.1049/el.2012.0463

Google Scholar

[17] J. Sun, D. Tao, S. Papadimitriou, P. S. Yu, and C. Faloutsos, Incremental tensor analysis: Theory and applications, ACM Transactions on Knowledge Discovery from Data (TKDD), 2(3):11, 2008.

DOI: 10.1145/1409620.1409621

Google Scholar

[18] J. Wen, X. Gao, Y. Yuan, D. Tao, and J. Li, Incremental tensor biased discriminant analysis: A new color-based visual tracking method, Neurocomputing, 73(4):827-839, 2010.

DOI: 10.1016/j.neucom.2009.10.013

Google Scholar

[19] J. G. Wang, E. Sung, and W. Y. Yau, Incremental two-dimensional linear discriminant analysis with applications to face recognition, Journal of network and computer applications, 33(3):314-322, 2010.

DOI: 10.1016/j.jnca.2009.12.014

Google Scholar