[1]
K. Hevner, 1936. Experimental studies of the elements of expression in music. American Journal of Psychology, vol. 48, no 2, pp.246-248.
Google Scholar
[2]
X. Hu, 2010. Music and Mood: Where Theory and Reality Meet, IDEALS, URI: http://hdl.handle.net/2142/14956.
Google Scholar
[3]
R. E. Thayer, 1989. The Biopsychology of Mood and Arousal, New York: Oxford Univ. Press.
Google Scholar
[4]
J. A. Russell, 1980. A circumplex model of affect, Journal of Personality and Social Psychology, vol39, no 6, pp.1161-1178.
Google Scholar
[5]
L. A. Schmidt and L. J. Trainor, 2001. Frontal brain electrical activity (EEG) distinguishes valence and intensity of musical emotions, Cognition & Emotion, vol. 15, no. 4, p.487–500.
DOI: 10.1080/02699930126048
Google Scholar
[6]
D. Sammler, M. Grigutsch, T. Fritz, and S. Koelsch, 2007. Music and emotion: Electrophysiological correlates of the processing of pleasant and unpleasant music, Psychophysiology, vol. 44, no. 2, p.293–304.
DOI: 10.1111/j.1469-8986.2007.00497.x
Google Scholar
[7]
T. Baumgartner, M. Esslen, L. Jäncke. 2006. From emotion perception to emotion experience: Emotions evoked by pictures and classical music, International Journal of Psychophysiology, vol. 60, no. 1, p.34–43.
DOI: 10.1016/j.ijpsycho.2005.04.007
Google Scholar
[8]
E. Altenmüller, K. Schürmann, V. K Lim, D. Parlitz, 2002. Hits to the left, flops to the right: different emotions during listening to music are reflected in cortical lateralisation patterns, Neuropsychologia, vol. 40, no. 13, p.2242–2256.
DOI: 10.1016/s0028-3932(02)00107-0
Google Scholar
[9]
T. Musha, Y. Terasaki, H.A. Haque and George A. Ivamitsky, 1997. Feature extraction from EEGs associated with emotions, Artificial Life and Robotics, vol. 1, no. 1, pp.15-19
DOI: 10.1007/bf02471106
Google Scholar
[10]
K. Ishino and M. Hagiwara, 2003. A feeling estimation system using a simple electroencephalograph, in Proc. IEEE Int. Conf. Syst., Man Cybern., vol. 5, p.4204–4209.
Google Scholar
[11]
K. Takahashi, 2004. Remarks on emotion recognition from bio-potential signals, 13th IEEE International Workshop on Robot and Human Interactive Communication, pp.95-100.
DOI: 10.1109/roman.2004.1374736
Google Scholar
[12]
P. C. Petrantonakis, L. J. Hadjileontiadis, 2010. Emotion Recognition From EEG Using Higher Order Crossings, IEEE trans. on inf. tech. in biomedicine, vol. 14, no. 2, pp.186-197.
DOI: 10.1109/titb.2009.2034649
Google Scholar
[13]
Y.P. Lin, C.H. Wang, T.P. Jung, et cl, 2010. EEG-Based Emotion Recognition in Music Listening, IEEE trans. on biomedical engineering, vol. 57, no. 7, pp.1798-1806.
DOI: 10.1109/tbme.2010.2048568
Google Scholar
[14]
A. Tornek, T. Field, M. H. Reif, M. Diego, N. Jones, 2003. Music Effects on EEG in Intrusive and Withdrawn Mothers with Depressive Symptoms. Psychiatry: Interpersonal and Biological Processes, vol. 66, no. 3, pp.234-243.
DOI: 10.1521/psyc.66.3.234.25157
Google Scholar
[15]
S. Koelsch, 2010. Towards a neural basis of music-evoked emotions, Trends in Cognitive Sciences, vol. 14, no. 3, p.131–137.
DOI: 10.1016/j.tics.2010.01.002
Google Scholar
[16]
J. Bhattacharyaa, H. Petsche, 2005. Phase synchrony analysis of EEG during music perception reveals changes in functional connectivity due to musical expertise, Signal Processing, vol. 85, no. 11, p.2161–2177.
DOI: 10.1016/j.sigpro.2005.07.007
Google Scholar
[17]
D. Wu, C.Y. Li, and D.Z. Yao, 2009. "Scale-free music of the brain," Plosone, vol. 4, no. 6, p. e5915.
Google Scholar