In Situ Testing and X Rays Radiation Effects of Pt/Bi3.15Nd0.85Ti3O12/Pt Ferroelectric Capacitors

Article Preview

Abstract:

Pt/Bi3.15Nd0.85Ti3O12(BNT)/Pt ferroelectric capacitors were monitored using in situ X-ray irradiation with 10 keV at BL14B1 beamline (Shanghai Synchrotron Radiation Facility). BL14B1 combined with a ferroelectric analyzer enabled measurements in situ of electrical performance. The hysteresis curve (PE) of distortion depended on the polarization during irradiation, but the diffracted intensities of the (117) peak did not change in the beginning. The PE curve had a negligible change from 2.09×109 Gy to 4.45×109 Gy. Finally, both Pr and Pr+ very rapidly increased, but the intensities of (117) decreased. The hysteresis loops were remarkably deformed at the maximum total dose of 4.87×109 Gy.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

293-297

Citation:

Online since:

June 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G. Cellere and A. Paccagnella, "A Review of Ionizing Radiation Effects in Floating Gate Memories," Device and Materials Reliability, IEEE Transactions on, vol. 4, no. 3, p.359 – 370, Sep. (2004)

DOI: 10.1109/tdmr.2004.836726

Google Scholar

[2] D. Hayashigawa, D. Kamp and A. Devilbiss, Non–Volatile Memory Technology Symposium, p.60 – 63, Nov.( 2007)

DOI: 10.1109/nvmt.2007.4389947

Google Scholar

[3] L. Courtade, Ch. Muller, G. Andreoli, and Ch. Turquat, Appl. Phys. Lett., vol. 89, no. 11, pp.113501-1–113501-3, Sep. (2006)

Google Scholar

[4] N. Menou, A. –M. Castagnos, C. Muller, JOURNAL OF APPLIED PHYSICS, vol. 97, no. 04, pp.044106-1–04106-8, Jan. 2005.

Google Scholar

[5] D. Wu, A. D. Li, H. Q. Ling, T. Yu, Z. G. Liu, N. B. Ming, Appl. Phys. A. vol.73, no. 2, p.255–257, Jun. (2001)

Google Scholar

[6] Q. Hong Li, Takeshi Horiuchi, S. Y. Wang, Mitsue Takahashi and Shigeki Sakai, Semicond. Sci. Technol., vol. 24, no. 2, p.5012–5016, Jan. (2009)

Google Scholar

[7] Shigeki Sakai, Mitsue Takahashi, Materials, vol. 3, no. 11, p.4950–4964, Nov. 2010.

Google Scholar

[8] Q. H. Li and Shigeki Sakai, Appl. Phys. Lett. , vol. 89, no. 22, p.3115–3118, Nov. (2006)

Google Scholar

[9] Hiroyuki TANAKA, Yukihiro KANEKO, and Yoshihisa KATO, Japanese Journal of Applied Physics, vol. 47, no. 9, p.7527–7532, Sep. (2008)

Google Scholar

[10] Yukihiro Kaneko, Hiroyuki Tanaka, and Yoshihisa Kato, Japanese Journal of Applied Physics, vol. 48, no. 09, pp. 09KA19–09KA19, Sep. (2009)

Google Scholar

[11] S. Huang, X. L. Zhong, Y. Zhang, Q. H. Tan, J. B. Wang, and Y. C. Zhou, IEEE Transactions on electron devices, vol. 58, no.10, Oct.( 2011)

Google Scholar

[12] J. X. Gao, L. R. Zheng, B. P. Huang, Z. T. Song, L. X. Yang, Y. J. Fan, D. Z. Zhu and C. L. Lin, Semicond. Sci. Technol. vol. 14, no. 9, p.836–839, (1999)

Google Scholar

[13] J. X. Gao, L. R. Zheng, X. Z. Duo, J. P. Huang, L. X. Yang, C. L. Lin, R. L. Yan, Thin Solid Films, vol. 340, p.132–136, Aug. (1999)

DOI: 10.1016/s0040-6090(98)01368-6

Google Scholar

[14] J. X. Gao, L. R. Zhengy, X. R. Fuy, C. L. Lin and R. L. Yan, J. Phys.: Condens. Matter, vol. 10, p.7493–7499, Apr. (1998)

Google Scholar

[15] I. Baturin, N. Menou, V. Shur, C. Muller, Materials Science and Engineering B 120, no. 1–3, p.141–145, Mar. (2005)

Google Scholar

[16] Q. J. Shi, Y. Ma, Y. S. Li, Y. C. Zhou, Nuclear Instruments and Methods in Physics Research B, vol. 269, no. 4, p.452–454, Dec. 2010.

Google Scholar

[17] Y. S. Li, Y. Ma, Y. C. Zhou, Appl. Phys. Lett. vol. 94, no. 4, pp.042903-1–042903-3, Jan. (2009)

Google Scholar

[18] T. Z. Liu, Z. G. Zhang, D. Xie, Y. Q. Dong, T. L. Ren, L. T. Liu and J. Zhu, Integrated Ferroelectrics, vol. 98, no.1, p.105–112, Dec. (2007)

Google Scholar

[19] Y. Zhang, X. L. Zhong, J. B. Wang, H. J. Song, Y. Ma, and Y. C. Zhou, Appl. Phys. Lett. vol. 97, no. 10, pp.103501-1–103501-3, Sep. (2010)

Google Scholar

[20] J. M. Benedetto, R. A. Moore, F. B. McLean, and P. S. Brody, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 37, p.6, Dec. (1990)

Google Scholar

[21] Y. M. Coic, O. Musseau, J. L. Leray, Nuclear Science, IEEE Transactions on, vol. 41, no. 3, p.495 – 502, Jun. (1994)

Google Scholar

[22] J.R. Schwank, R.D. Nasby, S.L. Miller, M.S. Rodgers and P.V. Dressendorfer, Nuclear Science, IEEE Transactions on, vol. 37, no. 6, p.1703 – 1712, Dec. 1990.

DOI: 10.1109/23.101180

Google Scholar

[23] G.C. Messenger and F. N. Coppage, IEEE Transactions on Nuclear Science, vol. 35, No. 6, p.1461–1466, Dec. (1988)

Google Scholar

[24] J. H. Li, Y. Qiao, X. L. Liu, C. J. Nie, and C. J. Lu, Appl. Phys. Lett. vol. 85, no. 1511, Oct. (2004)

Google Scholar

[25] Shanghai Synchrotron Radiation Facility (SSRF), [Online].http://ssrf.sinap.ac.cn/english/X–Ray Interactions With Matter [Online] http://henke.lbl.gov/optical_constants/

Google Scholar

[26] Z. P. Cao, A. L. Ding, X. Y. He, W. X. Cheng, P. S. Qiu, Journal of Crystal Growth, vol. 270, no.1–2, p.168–173, Sep. (2004)

Google Scholar

[27] R. Nathan Nowlin, D.M. Fleetwood, R.D. Schrimpf, R.L. Pease, W.E. Combst, IEEE TRANSACTIONS ON NUCLEAR SCIENCE, vol. 40, no. 6, Dec.(1993)

Google Scholar