[1]
Hill, M., Hole's Human Anatomy & Physiology, 9th Edition, 2002.
Google Scholar
[2]
Evans, E. A. and R. Skalak, Mechanics and thermodynamics of biomembranes: part 1, CRC Crit. Rev. Bioeng. 3(3) (1979) 181-330.
Google Scholar
[3]
Fung, Y. C., Biomechanics: mechanical properties of living tissues, New York; London, Springer-Verlag, 1993.
Google Scholar
[4]
Evans, E. A., Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests, Biophys. J. 43(1) (1983) 27-30.
DOI: 10.1016/s0006-3495(83)84319-7
Google Scholar
[5]
Strey, H., M. Peterson and E. Sackmann, Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition, Biophys. J. 69(2) (1995) 478-488.
DOI: 10.1016/s0006-3495(95)79921-0
Google Scholar
[6]
Sleep, J., D. Wilson, R. Simmons and W. Gratzer, Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study, Biophys. J. 77(6) (1999) 3085-3095.
DOI: 10.1016/s0006-3495(99)77139-0
Google Scholar
[7]
Suwanarusk R., Cooke B.M., Dondorp A.M., et al, The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax., J. Infect. Dis., 189(2) (2004) 190-194.
DOI: 10.1086/380468
Google Scholar
[8]
Lim C.T. Zhou E.H., Li A., et al., Experimental techniques for single cell and single molecule biomechanics, C Proceedings of the First TMS Symposium on Biological Materials Science, 26 (2006) 1278-1288.
DOI: 10.1016/j.msec.2005.08.022
Google Scholar
[9]
Paulitschke, M. and G.B. Nash, Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum, J. Lab. Clin. Med. 122(5) (1993) 581-589.
Google Scholar
[10]
Glenister, F. K., R. L. Coppel, A. F. Cowman, N. Mohandas and B. M. Cooke, Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells, Blood 99(3) (2002) 1060-1063.
DOI: 10.1182/blood.v99.3.1060
Google Scholar
[11]
Lim, C. T., M. Dao, S. Suresh, C. H. Sow and K. T. Chew, Large deformation of living cells using laser traps, Acta Materialia 52(7) (2004) 1837-1845.
DOI: 10.1016/j.actamat.2003.12.028
Google Scholar
[12]
Suresh S., Spatz J., Mills J.P., et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater. 1 (2005) 15-30.
DOI: 10.1016/j.actbio.2004.09.001
Google Scholar
[13]
Shelby J.P., White J., Ganesan K., et al., A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proc. Natl. Acad. Sci. USA 100 (2003) 14618-22.
DOI: 10.1073/pnas.2433968100
Google Scholar
[14]
Jiao G.Y., Tan K.S.W., Sow C.H., et al., Computational Modeling of the Micropipette Aspiration of Malaria Infected Erythrocytes, IFBME Proceedings 23 (2009) 1788-1791.
DOI: 10.1007/978-3-540-92841-6_444
Google Scholar
[15]
Jiao G.Y., M. Dao, C.T. Lim, and Zhang R.J., Finite element analysis of malaria infected erythrocyte stretched by optical tweezers , Chinese Journal of Computational Mechanics 28 Sup (2011) 141-146.
Google Scholar
[16]
Yeoh O.H., Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates, Rubber Chem. Technol. 63 (1990) 792-805.
DOI: 10.5254/1.3538289
Google Scholar
[17]
Dao M., Lim C. T. and Suresh S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids. 51 (2003) 2259-2280.
DOI: 10.1016/j.jmps.2003.09.019
Google Scholar
[18]
Lu, M. and X. Luo, Foundations of Elasticity, 2001.
Google Scholar
[19]
Evans E. and Fung Y.C., Improved measurements of the erythrocyte geometry, Microvasc. Res. 4 (1972) 335-347.
Google Scholar
[20]
Shu, C., S. Kuo-Li Paul, R. Skalak, S. Usami and A. Tozeren, Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophysical Journal 24(2) (1978) 463-487.
DOI: 10.1016/s0006-3495(78)85395-8
Google Scholar