Effect of Membrane Bending Stiffness on the Deformation of Erythrocytes

Article Preview

Abstract:

The erythrocytes play an important role in delivering oxygen and carbon dioxide in the human body. They are generally believed to be highly deformable and are able to squeeze through small capillaries. The elastic rigidity of the cell is associated to the change in free energy caused by both the stretch and the bending of the erythrocyte membrane. If the curvature of a shell is changed by deformation, the bending stiffness must be considered. However, researchers usually focus on the stretch of the cell membrane while analyzing the experimental data. In this article, mechanical models were proposed to study the erythrocytes deformation during optical tweezers stretching and micropipette aspiration. The effect of membrane bending stiffness on the cells deformability was concluded using finite element modeling and simulation.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 712-715)

Pages:

487-493

Citation:

Online since:

June 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Hill, M., Hole's Human Anatomy & Physiology, 9th Edition, 2002.

Google Scholar

[2] Evans, E. A. and R. Skalak, Mechanics and thermodynamics of biomembranes: part 1, CRC Crit. Rev. Bioeng. 3(3) (1979) 181-330.

Google Scholar

[3] Fung, Y. C., Biomechanics: mechanical properties of living tissues, New York; London, Springer-Verlag, 1993.

Google Scholar

[4] Evans, E. A., Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests, Biophys. J. 43(1) (1983) 27-30.

DOI: 10.1016/s0006-3495(83)84319-7

Google Scholar

[5] Strey, H., M. Peterson and E. Sackmann, Measurement of erythrocyte membrane elasticity by flicker eigenmode decomposition, Biophys. J. 69(2) (1995) 478-488.

DOI: 10.1016/s0006-3495(95)79921-0

Google Scholar

[6] Sleep, J., D. Wilson, R. Simmons and W. Gratzer, Elasticity of the red cell membrane and its relation to hemolytic disorders: an optical tweezers study, Biophys. J. 77(6) (1999) 3085-3095.

DOI: 10.1016/s0006-3495(99)77139-0

Google Scholar

[7] Suwanarusk R., Cooke B.M., Dondorp A.M., et al, The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax., J. Infect. Dis., 189(2) (2004) 190-194.

DOI: 10.1086/380468

Google Scholar

[8] Lim C.T. Zhou E.H., Li A., et al., Experimental techniques for single cell and single molecule biomechanics, C Proceedings of the First TMS Symposium on Biological Materials Science, 26 (2006) 1278-1288.

DOI: 10.1016/j.msec.2005.08.022

Google Scholar

[9] Paulitschke, M. and G.B. Nash, Membrane rigidity of red blood cells parasitized by different strains of Plasmodium falciparum, J. Lab. Clin. Med. 122(5) (1993) 581-589.

Google Scholar

[10] Glenister, F. K., R. L. Coppel, A. F. Cowman, N. Mohandas and B. M. Cooke, Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells, Blood 99(3) (2002) 1060-1063.

DOI: 10.1182/blood.v99.3.1060

Google Scholar

[11] Lim, C. T., M. Dao, S. Suresh, C. H. Sow and K. T. Chew, Large deformation of living cells using laser traps, Acta Materialia 52(7) (2004) 1837-1845.

DOI: 10.1016/j.actamat.2003.12.028

Google Scholar

[12] Suresh S., Spatz J., Mills J.P., et al., Connections between single-cell biomechanics and human disease states: gastrointestinal cancer and malaria, Acta Biomater. 1 (2005) 15-30.

DOI: 10.1016/j.actbio.2004.09.001

Google Scholar

[13] Shelby J.P., White J., Ganesan K., et al., A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes, Proc. Natl. Acad. Sci. USA 100 (2003) 14618-22.

DOI: 10.1073/pnas.2433968100

Google Scholar

[14] Jiao G.Y., Tan K.S.W., Sow C.H., et al., Computational Modeling of the Micropipette Aspiration of Malaria Infected Erythrocytes, IFBME Proceedings 23 (2009) 1788-1791.

DOI: 10.1007/978-3-540-92841-6_444

Google Scholar

[15] Jiao G.Y., M. Dao, C.T. Lim, and Zhang R.J., Finite element analysis of malaria infected erythrocyte stretched by optical tweezers , Chinese Journal of Computational Mechanics 28 Sup (2011) 141-146.

Google Scholar

[16] Yeoh O.H., Characterization of Elastic Properties of Carbon-Black-Filled Rubber Vulcanizates, Rubber Chem. Technol. 63 (1990) 792-805.

DOI: 10.5254/1.3538289

Google Scholar

[17] Dao M., Lim C. T. and Suresh S., Mechanics of the human red blood cell deformed by optical tweezers, J. Mech. Phys. Solids. 51 (2003) 2259-2280.

DOI: 10.1016/j.jmps.2003.09.019

Google Scholar

[18] Lu, M. and X. Luo, Foundations of Elasticity, 2001.

Google Scholar

[19] Evans E. and Fung Y.C., Improved measurements of the erythrocyte geometry, Microvasc. Res. 4 (1972) 335-347.

Google Scholar

[20] Shu, C., S. Kuo-Li Paul, R. Skalak, S. Usami and A. Tozeren, Theoretical and experimental studies on viscoelastic properties of erythrocyte membrane, Biophysical Journal 24(2) (1978) 463-487.

DOI: 10.1016/s0006-3495(78)85395-8

Google Scholar