A Class of Semiconducting Polymers as Potential Materials for Polymer Solar Cells

Article Preview

Abstract:

In this work, fifteen polymers have been studied to test their potential as donors for polymer solar cells by density functional theory. Those polymers contained five homopolymers based on pyridazine, [1,2,thiadiazolo [3,4-pyridazine, [1,2,oxadiazole [3,4-pyridazine, isothiazolo [3,4-pyridazine and isoxazolo [3,4-pyridazine, and ten copolymers composed of the above compounds and thiophene incorporated with 1:1 and 1:2 ratios. The fifteen polymers have been examined in terms of the abilities of absorbing sunlight, stabilities in the environment, and photovoltaic properties. The results suggest that the copolymes DTHP, DTHTP, DTHOP, DTHITP, and DTHIXP are good material candidates of polymer donor for polymer solar cells.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

177-184

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] F.C. Krebs, M. Jorgensen, K. Norrman, O. Hagemann, J. Alstrup, T. D. Nielsen, J. Fyenbo, K. Larsen and J. Kristensen. Sol. Energy Mater. Sol. Cells Vol. 93 (2009), p.442.

DOI: 10.1016/j.solmat.2008.12.001

Google Scholar

[2] F.C. Krebs. Sol. Energy Mater. Sol. Cells Vol. 93 (2009), p.465.

Google Scholar

[3] F.C. Krebs, S.A. Gevorgyan and J. Alstrup. J. Mater. Chem. Vol. 19 (2009), p.5442.

Google Scholar

[4] ) F.C. Krebs. Org. Electron Vol. 10 (2009), p.761.

Google Scholar

[5] O. Inganaes, M. Svensson, F. Zhang, A. Gadisa, N.K. Persson, X. Wang and M.R. Andersson. Appl. Phys. A Vol. 79 (2004), p.31.

Google Scholar

[6] C.R. McNeill, J.M. Halls, R. Wilson, G.L. Whiting, S. Berkebile, M.G. Ramser, R.H. Friend and N.C. Greenham. Adv. Funct. Mater. Vol. 18 (2008), p.2309.

DOI: 10.1002/adfm.200800182

Google Scholar

[7] S.E. Shaheen, C.J. Brabec, N. Sariciftci, S. Padinger, T. Fromherz and J.C. Hummelen. Appl. Phys. Lett. Vol. 78 (2001), p.841.

DOI: 10.1063/1.1345834

Google Scholar

[8] F. Zhang, W. Mammo, L.M. Andersson, S. Admassie, M.R. Andersson and O. Inganas. Adv. Mater. Vol. 18 (2006), p.2169.

Google Scholar

[9] D. Cheyns, K. Vasseur, C. Rolin, J. Genoe, J. Poortmans and P. Heremans. Nanotechnology Vol. 19 (2008), p.424016.

DOI: 10.1088/0957-4484/19/42/424016

Google Scholar

[10] W.J.E. Beck, M.M. Wienk, M. Kemerink, X. Yang and R.A.J. Janssen. J. Phys, Chem. B Vol. 109 (2005), p.9505.

Google Scholar

[11] Information on http://www.konarka.com/index.php/site/pressreleasedetail/konarkas_power_achieves_world_record_83_efficiency_certification_fr (January 26, 2011)

Google Scholar

[12] F. Lincker, D. Kreher, A.J.Do.J. Attias, E. Kin, P. Hapiot, N. Lemaitre, B. Geffroy, G. Ulrich and R. Ziessel. Inorg. Chem. Vol. 49 (2010), p.3991.

DOI: 10.1021/ic901925w

Google Scholar

[13] C. Gocmen, H.S. Buyuknacar, A.Y. Kots, F. Murad, O. Kiroglu, and E.K.J. Kumcu. Pharmacol. Exp. Ther. Vol. 316 (2006), p.753.

Google Scholar

[14] G. Parr and W. Yang: Density-functional Theory of Atoms and Molecules (Oxford Science Publications, 1989)

Google Scholar

[15] A.D. Becke, J. Chem. Phys. Vol. 98 (1993), p.5648.

Google Scholar

[16] C. Lee, W. Yang, and R.G. Parr. Phys. Rev. B Vol. 37 (1988), p.785.

Google Scholar

[17] K.N. Kudin, and G.E. Scuseria. Phys. Rev. B Vol. 61 (2000), p.16440.

Google Scholar

[18] Gaussian 03, Revision A.1, M. J. Frisch, G. W. Trucks, H. B. Schlegel, J. A. Pople. et.al Gaussian, Inc., Pittsburgh PA, 2003.

Google Scholar

[19] P.v.R. Schleyer, C. Maerker, A. Dransfeld, H.J. Jiao and N.J.R. van Eikema Hommes. J. Am. Chem. Soc. Vol. 118 (1996), p.6317.

DOI: 10.1021/ja960582d

Google Scholar

[20] P. Sista, H. Nguyen, J.W. Murphy, J. Hao, D.K. Dei, K. Palaniappan, J. Servello, R.S. Kularatne, B. E. Gnade, B. Xue, P.C. Dastoor, M.C. Biewer and M.C. Stefan. Macromolecules Vol. 43 (2010), p.8063.

DOI: 10.1021/ma101709h

Google Scholar

[21] M. C. Scharber, D. Muehlbacher, M. Koppe, P. Denk, C. Waldauf, A. J. Heeger, C. J. Brabec, Adv. Mater. 2006, 18, 789.

DOI: 10.1002/adma.200501717

Google Scholar

[22] V.D. Mihailetchi, P.W.M. Blom, J.C. Hummelen and M.T. Rispens. J. Appl. Phys. Vol. 94 (2003), p.6849.

Google Scholar

[23] R. Kroon, M. Lenes, J.C. Hummelen, P.W.M. Blom and B. de Boer. Polym. Rev. Vol. 48 (2008), p.531.

Google Scholar

[24] J.L. Bredas, D. Beljonne, V. Coropceanu and J. Cornil. Chem. Rev. Vol. 104 (2004), p.4971.

Google Scholar

[25] E.F. Valeev, V. Coropceanu, D.A. Da Silva Filho, S. Salman and J.L. Bredas. J. Am. Chem. Soc. Vol. 128 (2006), p.9882.

Google Scholar