[1]
Pool Ch., Owens F. Nanotechnologies. M., Tekhnosfera, 2005, 336 p.
Google Scholar
[2]
Rakov E. G. Obtaining thin carbon nanotubes by means of catalytic pyrolysis at a carrier. Chemistry successes, 2007, vol. 76, № 1, pp.3-19.
Google Scholar
[3]
Ivanova V. S., Kuzeev I. R., Zakirnichnaya M. M. Synergy and fractals. Universality of the materials' mechanical behaviour. Ufa, UGNTU Publishers, 1998, 366 p.
Google Scholar
[4]
Kozlov G. V., Novikov V. U. Synergy and fractal analysis of cellular polymers. М., Classics, 1998, 112 p.
Google Scholar
[5]
Malamatov A. H., Kozlov G. V., Mikitayev М.А. Mechanisms of reinforcing polymer nanocomposites. М., Mendeleyev RHTU Publishers, 2006, 240 p.
Google Scholar
[6]
Kuzeev I. R., Samigullin G. H., Kulikov D. V., Zakirnichnaya M. M. Complex systems in nature and technics. Ufa, UGNTU Publishers, 1997, 225 p.
Google Scholar
[7]
Balankin A. S. Synergy of strain body. М., USSR Ministry of Defense Publishers, 1991, 404 p.
Google Scholar
[8]
Kozlov G. V., Sanditov D. S. Anharmonic effects and physico-mechanical properties of polymers. Novosybirsk, Nauka, 1994, 261 p.
Google Scholar
[9]
Budtov V. P. Physical chemistry of polymer solutions. SPb., Chemistry, 1992, 384 p.
Google Scholar
[10]
Wu S. Chain structure and entanglement. J. Polymer Sci.: Polymer Phys., 1989, v. 27, № 4, pp.723-741.
Google Scholar
[11]
Kozlov G. V., Burya A. I., Dolbin I. V. Influence of the rotating electromagnetic field on the structure of phenilon-based carbon plastics. Applied physics, 2006, № 1, pp.14-18.
Google Scholar
[12]
Sheng N., Boyce M.C., Parks D.M., Rutledge G.C., Abes J.I., Cohen R.E. Multiscale micromechanical modeling of polymer/clay nanocomposities and the effective clay particle. Polymer, 2004, v. 45, № 2, pp.487-506.
DOI: 10.1016/j.polymer.2003.10.100
Google Scholar
[13]
Burya A. I., Kozlov G. V., Rula I. V. Integrated technique of assessing the content of interface areas in polymer composites. Pridneprov'ye Science News, 2004, № 3, pp.8-11.
Google Scholar
[14]
Yoon P.J., Hunter D.L., Paul D.R. Polycarbonate nanocomposities. Part 1. Effect of organoclay structure on morphology and properties. Polymer, 2003, v. 44, № 21, pp.5323-5339.
DOI: 10.1016/s0032-3861(03)00528-7
Google Scholar
[15]
Kozlov G. V., Malamatov A. H., Burya A. I., Lipatov Yu. S. Mechanisms of reinforcing polymer nanocomposites. Proceedings of NASc. of Ukraine, 2006, № 7, pp.148-152.
Google Scholar
[16]
Kozlov G. V., Yanovsky Yu. R., Lipatov Yu. S. Fractal analysis of structure and properties of interface layers in discontinuously filled polymer composites. Mechanics of composition materials and constructions, 2002, vol. 8, № 1, pp.111-149.
Google Scholar
[17]
Hentschel H.G.E., Deutch J.M. Flory-type approximation for the fractal dimension of cluster-cluster aggregates. Phys. Rev. A, 1984, v. 29, № 12, pp.1609-1611.
DOI: 10.1103/physreva.29.1609
Google Scholar
[18]
Avnir D., Farin D., Pfeifer P. Molecular fractal surfaces. Nature, 1984, v. 38, № 5959, pp.261-263.
DOI: 10.1038/308261a0
Google Scholar
[19]
Pfeifer P. Interaction of fractals with fractals: adsorption of polystirol on porous surface of Al2O3. In: Fractals in physics. Ed. Pietronero L., Tosatti E М., Mir, 1988, pp.72-81.
DOI: 10.1016/b978-0-444-86995-1.50010-x
Google Scholar
[20]
Malamatov A. H., Kozov G. V., Antipov Ye. M., Mikitayev М.А. Mechanism of interface layers' formation in polymer nanocomposites. Promising materials, 2006, № 5, pp.54-58.
Google Scholar
[21]
Holiday L., Robinson J. Thermal expansion of polymer composition materials. In: Industrial polymer composition materials. Ed. Richardson М. М., Chemistry, 1980, pp.241-283.
Google Scholar