Studies on Pyrolysis Behaviour of Boron-Containing Phenolic Resin/High-Silica Fiberglass Fabric Ceramifying Composites

Article Preview

Abstract:

The boron-containing phenolic resin/high-silica fiberglass fabric ceramifying composites were prepared using muscovite micas loaded boron-containing phenolic resin (BPF) as matrix, high-silica fiberglass fabric as reinforcements. The boron-containing phenolic resin (BPF) reacted with the muscovite to form ceramic residue after thermal pyrolysis under high temperature. X-Ray Diffraction (XRD) analysis of the composites at different temperatures showed the formation of new crystalline phases as a result of reactions between the degradation residue of BPF and the muscovite. Electron probe micro-analyzer (EPMA) was used to explore the changes in microstructure and local micro-chemical composition after samples were pyrolyzed under high temperatures. The ceramic yield of the composites ranged from 84.39% to 75.23% when pyrolyzed 700 to 1300°C in air.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

304-309

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] FANZhenxiang.,&CHENGHaifeng.(2005).Development of Thermal Protection Materials. Materials Review, 19,13-16.

Google Scholar

[2] KatzmanHA, Ma]lonJ, BarryWT.J. AdvMater,1995,4:21

Google Scholar

[3] Max I B. Advanced metallic thermal protection systems for reusable launch vehicle. University of Virginia, (2000)

Google Scholar

[4] Behrens B,Muller M. Technologies for thermal protection systems applied on re-usable launcher. Acta Astronautica, 2004, 55:52

DOI: 10.1016/j.actaastro.2004.05.034

Google Scholar

[5] SHI Zhenhai,LI Kezhi,LI Hejun,TIAN Zhu.(2007) Research Status and Application Advance of Heat Resistant Materials for Space Vehicle. Materials Review, 21, 8:15-17.

Google Scholar

[6] Messinger R,Pulley J. Thermal-mechanical Cycle Test of A Cryogenic Tank of RLV[R].AIAA-2003-1766.

Google Scholar

[7] T.R. Crompton. (2010).Thermo-oxidative Degradation of Polymers. Lightning Source Inc.

Google Scholar

[8] Jigang Wang.,& NanJiang.(2009).Effect of the evolution of phenol–formaldehyde resin on the high-temperature bonding. Adhesion & Adhesives, 29, 718-723.

DOI: 10.1016/j.ijadhadh.2009.03.001

Google Scholar

[9] Mohamed O. Abdalla.,&Adriane Ludwick.(2003).Boron-modified phenolic resins for high performance applications.Polymer,44,7353-7359.

DOI: 10.1016/j.polymer.2003.09.019

Google Scholar

[10] Kimberly A. Trick & Tony es. Aliba. (1995). Mechanisms of the pyrolysis of phenolic resin in a carbon/phenolic composite. Elsevier Science Ltd.

Google Scholar

[11] Mckee DW, Spiro CL, Lamby EJ. Carbon 1984;22:507–11.

Google Scholar

[12] Duan-Chih Wang.,&Geng-Wen Chang. (2008). Preparation and thermal stability of boron-containing phenolic resin/clay nanocomposites. Polymer Degradation & Stability, 93, 125-133.

DOI: 10.1016/j.polymdegradstab.2007.10.021

Google Scholar

[13] L. G. Hanu, G. P. Simon, Y. B. Cheng. Preferential orientation of muscovite in ceramifiable silicone composites. Materials Science and Engineering A, 2005, 398: 180~187

DOI: 10.1016/j.msea.2005.03.022

Google Scholar

[14] L. G. Hanu, G. P. Simon, J. Mansouri, R.P. Burford, Y.B. Cheng. Development of polymer–ceramic composites for improved fire resistance. Journal of Materials Processing Technology, 2004, 153: 401~407

DOI: 10.1016/j.jmatprotec.2004.04.104

Google Scholar

[15] Mansouri J, Wood A, Roberts K, Cheng Y-B, Burford RP. Investigation of the ceramifying process of modified silicone–silicate compositions. J. Mater. Sci., 2007, 42: 6046~6055

DOI: 10.1007/s10853-006-1163-8

Google Scholar

[16] Mansouri J, Burford RP, Cheng YB, Hanu L. Formation of strong ceramified ash from silicone-based compositions. J Mater Sci, 2005, 40: 5741~5749

DOI: 10.1007/s10853-005-1427-8

Google Scholar

[17] J. Mansouri, R.P. Burford, Y.B. Cheng. Pyrolysis behaviour of silicone-based ceramifying composites. Materials Science and Engineering A, 2006, 425: 7~14

DOI: 10.1016/j.msea.2006.03.047

Google Scholar

[18] L. G. Hanu, G. P. Simon, Y. B. Cheng. Thermal stability and flammability of silicone polymer composites. Polymer Degradation and Stability, 2006, 91: 1373~1379

DOI: 10.1016/j.polymdegradstab.2005.07.021

Google Scholar

[19] Juliana Anggonol, Brian Derby. Pyrolysis of aluminium loaded polymethylsiloxanes: the influence of Al/PMS ratio on mullite formation. J Mater Sci, 2010, 45: 233–241

DOI: 10.1007/s10853-009-3925-6

Google Scholar