On the Mechanism of Enhanced Photoluminescence of SiNx:Tb3+ Compared with SiOx:Tb3+

Article Preview

Abstract:

Room-temperature photoluminescence (PL) properties of the Tb3+ ion implanted non-stoichiometric silicon nitride (SiNx:Tb3+) and silicon dioxide (SiOx:Tb3+) were studied. The films were deposited by plasma-enhanced chemical vapor deposition (PECVD) and then annealed at different temperatures for 1 hour in flowing N2 after the Tb ion-implantation. Results show that there are four intense PL peaks due to the intra-4f transitions of Tb3+ in the wavelength from 470 nm to 625 nm for both kinds of films. Moreover, the PL intensity of Tb3+:SiNx is much higher than that of Tb3+:SiOx. The less oxygen content of the SiNx film and, more importantly, the faster recombination lifetime of Tb3+ ion in SiNx film are the main reasons. This result shows that SiNx:Tb3+ can be used for silicon-based light emission materials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

332-336

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L.T. Canham: Appl. Phys. Lett. Vol. 57 (1990), p.1046.

Google Scholar

[2] D.J. Lockwood and L.Pavesi in: Silicon Photonics,Topics of Applied Physics, edited by L.Pavesi and D.J. Lockwood, (Springer-Verlag Berlin Heidelberg, 2004).

DOI: 10.1007/978-3-642-10506-7

Google Scholar

[3] H. Ennen, J. Schneider, G. Pomrenke and A. Axmann: Appl. Phys. Lett. Vol. 43, (1983), p.943.

Google Scholar

[4] A. Polman, G.N. Van den Hoven, J.S. Custer, J.H. Shin and R. Sema: J. Appl. Phys. Vol. 77 (1995), p.1256.

Google Scholar

[5] M. Yoshihara, A. Sekiya, T. Morita, K. Ishii, S. Shimoto and S.Sakai: J. Phys. D:Appl. Phys. Vol. 30, (1997), p.1908.

Google Scholar

[6] H. Amekura, A. Eckau, R. Carius and Ch. Buchal: J. Appl, Phys. Vol. 84 (1998), p.3867.

Google Scholar

[7] J.M. Sun, W. Skorupa, T. Dekorsy, M. Helm, L. Rebohle and T. Gebel: J. Appl. Phys. Vol. 97 (2005), p.123513.

DOI: 10.1063/1.1935766

Google Scholar

[8] M.E. Castagna, S. Coffa, M. Monaco, A. Muscara, L. Caristia, S. Lorenti and A. Messina: Mater. Sci. Engin. B Vol. 105 (2003), p.83.

DOI: 10.1016/j.mseb.2003.08.021

Google Scholar

[9] M.J.V. Bell, L.A.O. Nunes and A.R. Zanatta: J. Appl. Phys. Vol. 86, (1999), p.338.

Google Scholar

[10] A.R. Zanatta, C.T.M. Ribeiro and U. Jahn: Appl. Phys. Lett. Vol. 79 (2001), p.488.

Google Scholar

[11] A.R. Zanatta, M.J.V. Bell and L.A.O. Nunes: Phys. Rev. B Vol. 59 (1999), p.10091.

Google Scholar

[12] H. Kato, A. Masuzawa, T. Nowa, K. Soo Seol and Y. Ohki: J. Phys.: Condensed Matter Vol. 13 (2001), p.6541.

Google Scholar

[13] B. Stannowshi, J.K. Rath and R.E.I. Schropp: J. Appl. Phys. Vol. 93 (2003), p.2618.

Google Scholar

[14] Z. Yuan, D. Li, M. Wang, D. Gong, P. Cheng, P. Chen and D. Yang: Mater. Sci. Engin. B Vol. 146 (2008), p.126.

Google Scholar

[15] Z. Yuan, D. Li, M. Wang, P. Chen, D. Gong, L. Wang and D. Yang: J. Appl. Phys. Vol. 100, (2006), p.083106.

Google Scholar

[16] J.F. Ziegler, J.P. Biersack and U. Littmark: The stopping and range of ions in solids, (Pergamon Press, New York 1985).

Google Scholar

[17] B.R. Judd: Phys. Rev. Vol. 127 (1962), p.750.

Google Scholar

[18] G.S. Ofelt: J. Chem. Phys. Vol. 37 (1962), p.511.

Google Scholar

[19] W.T. Carnall, P.R. Fields and K. Rajnak,: J. Chem. Phys. Vol. 49 (1968), p.4447.

Google Scholar

[20] W.L. Warren, P.M. Lenahan and S E. Curry: Phys. Rev. Lett. Vol. 65 (1990), p.207.

Google Scholar

[21] S.V. Deshpande, E. Gulari, S. Brown and S. Rand: J. Appl. Phys. Vol. 77 (1995), p.6534.

Google Scholar

[22] J. Robertson and M. J. Powell: Appl. Phys. Lett. Vol. 44 (1984), p.415.

Google Scholar

[23] W.L. Warren, J. Robertson and J. Kanichi: Appl. Phys. Lett. Vol. 63 (1993), p.2685.

Google Scholar

[24] H. Jeong, S. Seo and J.H. Shin: Appl. Phys. Lett. Vol. 88 (2006), p.161910.

Google Scholar