Effect of Substrate Orientation and PH3 Thermal Annealing Treatment on Catalyst-Free InP Nanowires

Article Preview

Abstract:

Catalyst-free InP nanowires were grown on Si (100) and Si (111) substrates by metal organic chemical vapor deposition and the morphology, crystal structure, and optical properties of the nanowires are investigated. X-ray diffraction results show two peaks of InP (111) and InP (220) in the spectra. Two more peaks of InP (200) and InP (311) are observed if PH3 thermal annealing is performed on the sample for 15 minutes after nanowire growth is completed. The InP (220), InP (311), and InP (200) peaks originate from InP crystal formation on top of the nanowires; only the InP (111) peak originates from the InP nanowires. Finally, the temperature dependence of the PL peak positions of InP nanowires grown on Si (100) and InP substrate are measured.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

84-88

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] J.M. Bao, D.C. Bell, F. Capasso, J.B. Wagner, T. Martensson, J. Tragardh, L. Samuelson, Nano Lett. 3 (2008)836–841.

Google Scholar

[2] K. Pemasiri, M. Montazeri, R. Gass, L. M. Smith, H. E. Jackson, J. Yarrison-Rice, S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, X. Zhang, J. Zou Nano Lett., 9 ( 2009) 648-654

DOI: 10.1021/nl802997p

Google Scholar

[3] S. Paiman, Q. Gao, H. H. Tan, C. Jagadish, K. Pemasiri, M. Montazeri, H. E. Jackson, L. M. Smith, J. M. Yarrison-Rice, X. Zhang, J. Zou, Nanotechnology 20 (2009) 225606.

DOI: 10.1088/0957-4484/20/22/225606

Google Scholar

[4] J. Wang, M.S. Gudiksen, X. Duan, Y. Cui, C.M. Lieber, Science 293 (2001) 1455-1457.

Google Scholar

[5] E. Hilner, U. Hakanson, L.E. Froberg, M.Karlsson, P. Kratzer, E. Lundgren, L. Samuelson, A. Mikkelsen, Nanolett. 8 (2008) 3978-3982.

DOI: 10.1021/nl802500d

Google Scholar

[6] E. P. A. M. Bakkers and M. A. Verheijen, J. Am. Chem. Soc. 125(2003)3440.

Google Scholar

[7] D. M. Cornet, V. G. M. Mazzetti, R. R. LaPierre, Appl. Phys. Lett. 90 ( 2007)013116.

Google Scholar

[8] P. J. Poole, J. Lefebvre, J. Fraser, Appl. Phys. Lett. 83(2003)2055.

Google Scholar

[9] Fauzia Jabeen, Vincenzo Grillo, Silvia Rubini and Faustino Martelli Nanotechnology 19 (2008)275711.

Google Scholar

[10] C. J. Novotny and P. K. L. Yu, Appl. Phys. Lett. 87(2005)203111.

Google Scholar

[11] C. Patrik T. Svensson, T. Martensson, J. Tragardh, C. Larsson, M. Rask, D. Hessman, L. Samuelson, J. Ohlsson, Nanotechnology 19(2008)305201.

DOI: 10.1088/0957-4484/19/30/305201

Google Scholar

[12] A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Fan, J. Guo, J. Bokor, A. Javey, Nano Lett. 9 (2009)360.

DOI: 10.1021/nl803154m

Google Scholar

[13] Z. M. Zhao, O. Hulko, T. S. Yoon, Y. H. Xie, J. Appl. Phys. 98(2005)123526.

Google Scholar

[14] Shuzhen Yu, Guoqing Miaoa, Yixin Jin, Tiemin Zhang, Hang Song, Hong Jiang, Zhiming Li, Dabing Li, Xiaojuan Sun Journal of Alloys and Compounds 479 (2009) 832–834

Google Scholar

[15] Jiming Bao,David C. Bell and Federico Capasso Nano Lett., Vol. 8(2008) 836-841

Google Scholar