A 1V 2.52-kS/s 367nW Rail-to-Rail 10-Bit Successive Approximation ADC

Article Preview

Abstract:

A 10-bit successive approximation (SAR) analog-to-digital converter (ADC) in 90nm CMOS dedicated for sample rate limited applications is presented. The SAR ADC achieves an extra low energy by applying only one pre-opamp and without any low voltage techs in preserving the desired low power. HSPICE simulation results show that at a supply voltage of 1V and an output rate of 2.52kS/s, the SAR ADC performs a peak signal-to-noise-and-distortion ratio of 56.8dB. Our SAR ADC consumes 367nW in the simulation, corresponding to a figure of merits of 258.1fJ/conversion-step. And at lowest sample rate mode with an output rate of 126S/s, the ADC consumes only 21nW.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

1717-1722

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Kenneth C. Smith, Alice Wang, and Laura C. Fujino, "Through the Looking Glass, Trend tracking for ISSCC2012," IEEE J. Solid-State Circuits, 2012, winter, pp.4-20.

DOI: 10.1109/mssc.2011.2177577

Google Scholar

[2] Marcus Yip, Anantha P. Chandrakasan, "A Resolution-Reconfigurable 5-to-10b 0.4-to-1V Power Scalable SAR ADC," ISSCC, pp.190-191, 2011.

DOI: 10.1109/isscc.2011.5746277

Google Scholar

[3] M. van Elzakker, Paul Geraedts, Bram Nauta, et al., "A 10-bit Charge-Redistribution ADC Consuming 1.9uW at 1MS/s," IEEE J. Solid-State Circuits, vol. 45, no. 5, pp.1007-1015, May 2010.

DOI: 10.1109/jssc.2010.2043893

Google Scholar

[4] Pieter Harpe, Yan Zhang, Guido Dolmans, et al., "A 7-to-10b 0-to-4MS/s Flexible SAR ADC with 6.5-to-16fJ /conversion-step," ISSCC, pp.472-474, 2012.

DOI: 10.1109/isscc.2012.6177096

Google Scholar

[5] Body Sensor Networks. Available at: http://ubimon.doc.ic.ac. uk/bsn/m621.html.

Google Scholar

[6] J. L. McCreary, P. R. Gray, and D. A. Hodges. "All-MOS charge redistribution analog-to-digital conversion techniques-Part I", IEEE J. Solid-State Circuits, 1975, 10, pp.371-379.

DOI: 10.1109/jssc.1975.1050629

Google Scholar

[7] R. E. Suarez, P. R. Gray, and D. A. Hodges, All-MOS charge redistribution analog-to-digital conversion techniques-Part II, IEEE J. Solid-state Circuits, 1975, 10, pp.379-385.

DOI: 10.1109/jssc.1975.1050630

Google Scholar

[8] N. Verma and A. P. Chandrakasan, "A 25 uW 100 kS/s 12b ADC for wireless micro-sensor applications," in IEEE Int. Solid-State Circuits Conf. (ISSCC) Dig. Tech. Papers, 2006, pp.822-831.

DOI: 10.1109/isscc.2006.1696122

Google Scholar

[9] JintianRong, YuHen, YanRongGuo, YanGuozheng, et al., "Applying MATLAB in Biomedical signals acquisition and processing," Computer Applications and Software, 2010, vol.27, no.8, pp.26-28.

Google Scholar

[10] S. J. Lovett, M. Welten, A. Mathewson, and B. Mason, "Optimizing MOS transistor mismatch," IEEE J. Solid-State Circuits, vol. 33, no. 1, pp.147-150, Jan. 1998.

DOI: 10.1109/4.654947

Google Scholar

[11] Libing Hu, Wenshi Li, "Research on FoM of SAR ADC with Low-Power, High-Speed and High-Resolution," Electronic devices, 2011, vol.34, no.3, pp.341-345.

Google Scholar