[1]
L. Hou, V N. Evaluation of stress affects flow in rubber mixing J. Nonlinear analysis, Elsevier Sciences. 47 (2001) 1809-1820.
Google Scholar
[2]
L. Hou, BPR, D.WA. Physics of Plasmas C. American Institute of Physics, 3-2(1996) 473-481.
Google Scholar
[3]
L. Hou, L. Cai. Nonlinear property of the visco-elastic-plastic material in the impact problem J. Journal of Shanghai University (English Edition), (2009) 23-28.
DOI: 10.1007/s11741-009-0106-3
Google Scholar
[4]
L. Hou, H. Ding, H.L. Li. The High Performance Computing on the Crash-Safety Analysis C. Proceeding of High Performance Computing and Application, Shanghai, (2009) 169-176.
Google Scholar
[5]
Q. Lin, N.N. Yan. Super convergence of mixed finite element methods for Maxwell's equations. Engineering Mathematics, 13(1996) 1-10.
Google Scholar
[6]
L. Hou, NassehiV. Evaluation of stress-e®ective °ow in rubber mixing. Nonlinear Analysis. 47(2001) 1809-1820.
Google Scholar
[7]
L. Hou, D.Z. Lin, H.L. Li. Computational Modeling on the Complex Boundary Conditions in the Impact Problem C. International Conference on Computer and Network Technology, 4(2011) 231-235.
Google Scholar
[8]
L. Hou, H.L. Li, H. Wang. Stochastic Analysis in the Visco-ElasticImpact Condition J. International Review of Chemical Engineering, 2(2010) 178-183.
Google Scholar
[9]
C.D. Zhu, Q. Lin. The finite element super convergence theory, Hunan Science and Technology Press, 1989.
Google Scholar
[10]
C.M. Chen. The introduction to Scientific Computing, Science Press, 2005.
Google Scholar
[11]
Ladyzenskaya O A, Ural'ceva N N. Linear and Quasi-linear Equations of Elliptic Type. New York: Academic Press, 1968.
Google Scholar
[12]
Frehse J, Rannacher R. Asymptotic L∞-error estimates for linear finite element approximations of quasilinear boundary value problems. AIAM J. Number. Anal., 15(1978) 418-431.
DOI: 10.1137/0715026
Google Scholar