[1]
RESNICK P, IAKOVOU N, SUSHAK M, et al. GroupLens: An Open Architecture for Collaborative Filtering of Netnews [C] // Proceedings of ACM 1994 Conference on Computer Supported Cooperative Work, Chapel Hill, NC: Pages 175-186
DOI: 10.1145/192844.192905
Google Scholar
[2]
HILL W, STEAD L, ROSENSTEIN M, et al. Recommending and evaluating choices in a virtual community of Use [C] // Proceedings of SIGCHI conference on Human Factors in Computing Systems. New York: ACM Press, 1995: 194-201
DOI: 10.1145/223904.223929
Google Scholar
[3]
RESNICK P, Varian HR. Recommender systems. Communications of the ACM, 1997, 40(3): 56-58
Google Scholar
[4]
MOONEY R J, BENNETT P N, ROY L. Book recommending using test categorization with extracted information [C] //Proceedings of AAAI-98/ICML-98 Workshop on Learning for Text Categorization and
the AAAI-98 Workshop on Recommender Systems, pp.49-54 and pp.70-74
Google Scholar
[5]
PAZZANI M, BILLSUS D. Learning and Revising User Profiles: The Identification of Interesting Web Sites [J]. Machine Learning, 1977, 27(3): 313-331.
DOI: 10.1023/a:1007369909943
Google Scholar
[6]
MOSTAFA J, LAM W. Automatic classification using supervised learning in a medical document filtering application [J]. Information Processing and Management,2000, 36(3): 415-444
DOI: 10.1016/s0306-4573(99)00033-3
Google Scholar
[7]
SUNGSHUN W, BINSHAN L, WENTIEN C. Using contextual information and multidimensional approach for recommendation [J]. Expert System with Applications, 2009, 36(2): 1268-1279
Google Scholar
[8]
PANACIOTIS S, ALEXANDROS N, APSTOLOS N, et al. Collaborative recommender system: combing effectiveness and efficiency [J]. Expert System with Applications, 2007, 34(4): 2995-3013
Google Scholar
[9]
LEUNG C W, CHAN S C, CHUNG F, et al. An empirical study of a cross-level association rule mining approach to cold-start recommendations [J].Knowledge-based Systems, 2008, 21(7): 515-529
DOI: 10.1016/j.knosys.2008.03.012
Google Scholar
[10]
SOMLO G, HOWE A. Adaptive lightweight text filtering [C] // Proceedings of the 4th International Conference on Advances in Intelligent Data Analysis. 2001: 319-329.
DOI: 10.1007/3-540-44816-0_32
Google Scholar
[11]
ROBERTSON S. Threshold setting and performance optimization in adaptive filtering [J]. Information Retrieval, 2002, 5(2-3): 239-256.
Google Scholar
[12]
ZHANG Yi, CALLAN J. Maximum likelihood estimation for filtering thresholds [C] // Proceedings of the 24th Annual International ACM SIGIR Conference on Research and Development in Information Retrieval. New York: ACM Press, 2001: 294-302.
DOI: 10.1145/383952.384012
Google Scholar
[13]
Bao Wen, Li Guan Jun. Ontology storage management technology research. Chinese science and technology papers online[EB/OL][2007-06-26].http://www.paper.edu.cn/downloadpaper.php?serial_number=200704-631
Google Scholar
[14]
Rudi L, Paul M B. The Google Similarity Distance [J]. IEEE Transactions on Knowledge and Data Engineering, 2007, 19(3): 370-383.
Google Scholar
[15]
SPERTUS E, SAHAMI M, BUYUKKOKTEN O. Evaluating similarity measures: a large-scale study in the orkut social network [C] // Proceedings of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD-2005), (2005)
DOI: 10.1145/1081870.1081956
Google Scholar