Wavefront Sensing by Digital Holography in Optical Sparse Aperture Imaging System

Article Preview

Abstract:

The optical sparse aperture imaging system consists of several small apertures for high resolution imaging. The incoherent light from each small aperture will form an image together strictly at the same focal plane, while the phase error will destroy such co-phase condition. The phase error is caused by deployment of small aperture and should be diminished. We applied digital holography technology to detect the wavefront of this system. The theoretical analysis and experiment are presented to demonstrate successful reconstruction of phase error.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 718-720)

Pages:

2015-2020

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] "List of largest optical reflecting telescopes", http://en.wikipedia.org/wiki/List_of_largest_optical_reflecting_telescopes#Top_telescope_2010

Google Scholar

[2] W. A. Traub, "Combining beams from separated telescopes," Appl. Opt. 25(4), 528 (1986)

DOI: 10.1364/ao.25.000528

Google Scholar

[3] J. S. Fender, R. A. Carreras, "Demonstration of an optically phased telescope array," Opt. Eng. 27(9), 706 (1988)

DOI: 10.1117/12.7976748

Google Scholar

[4] C. R. De Hainaut, D. C. Duneman, R. C. Dymale, J. P. Blea, B. D. O'Neil and C. E. Hines, "Wide field performance of a phased array telescope," Opt. Eng. 34(3), 876 (1995)

DOI: 10.1117/12.196461

Google Scholar

[5] N. J. Miller, M. P. Dierking, and B. D. Duncan, "Optical sparse aperture imaging," Appl. Opt. 46(23), 5933 (2007)

DOI: 10.1364/ao.46.005933

Google Scholar

[6] S. J. Chung, D. W. Miller and O. L. de Weck, "ARGOS testbed: study of multidisciplinary challenges of future spaceborne interferometric arrays," Opt. Eng. 43(9), 2156 (2004)

DOI: 10.1117/1.1779232

Google Scholar

[7] R. L. Kendrick, Jean-Noel Aubrun, Ray Bell, et.al., "Wide-field Fizeau imaging telescope: experimental results," Appl. Opt. 45(18), 4235 (2006)

Google Scholar

[8] E. E. Sabatke, J. H. Burge, and P. Hinz, "Optical design of interferometric telescopes with wide fields of view," Appl. Opt. 45(31), 8026 (2006)

DOI: 10.1364/ao.45.008026

Google Scholar

[9] J.H. Seldin, R.G. Paxman, V.G. Zarifis, L. Benson, and R.E. Stone, "Closed-loop wavefront sensing for a sparse-aperture, multiple-telescope array using broad-band phase diversity," Proc. of SPIE 4091, 48 (2000)

DOI: 10.1117/12.405804

Google Scholar

[10] F. Baron, I. Mocoeur, F. Cassaing, and L. M. Mugnier, "Unambiguous phase retrieval as a cophasing sensor for phased array telescopes," J. Opt. Soc. Am. A 25(5), 1000 (2008)

DOI: 10.1364/josaa.25.001000

Google Scholar

[11] T.-C. Poon, Digital Holography and Three-Dimensional Display: Principles and Applications (Springer, 2006)

Google Scholar

[12] B. Kemper and G. von Bally, "Digital holographic microscopy for live cell applications and technical inspection," Appl. Opt. 47, A52 (2008).

DOI: 10.1364/ao.47.000a52

Google Scholar

[13] D. Wang, J. Han, H. Liu, et.al., "Experimental study on imaging and image restoration of optical sparse aperture systems," Opt. Eng. 46(10), 103201 (2007)

DOI: 10.1117/1.2799512

Google Scholar

[14] J. W. Goodman, Introduction to Fourier Optics 2nd Edition (McGraw-Hill Companies, Inc., New York, 1996)

Google Scholar