[1]
D. Lowe, "Distinctive image features from scale-invariant keypoints," Int'l J. Computer Vision, vol. 60, no. 2, p.91–110, 2004.
DOI: 10.1023/b:visi.0000029664.99615.94
Google Scholar
[2]
N. Dalal and B. Triggs, "Histograms of oriented gradients for human detection," in Proc. of CVPR, vol. 1, 2005, p.886–893.
Google Scholar
[3]
P. Sabzmeydani and G. Mori, "Detecting pedestrians by learning shapelet features," in Proc. CVPR, 2007.
DOI: 10.1109/cvpr.2007.383134
Google Scholar
[4]
P. Viola, M. J. Jones, and D. Snow, "Detecting pedestrians using patterns of motion and appearance," Int'l J. Computer Vision, vol. 63, p.153–161, 2005.
DOI: 10.1007/s11263-005-6644-8
Google Scholar
[5]
E. Shechtman and M. Irani, "Matching local self-similarities across images and videos," in Proc. CVPR, 2007.
DOI: 10.1109/cvpr.2007.383198
Google Scholar
[6]
M. Leordeanu, M. Hebert, and R. Sukthankar, "Beyond local appearance: Category recognition from pairwise interactions of simple features," in Proc. CVPR, 2007.
DOI: 10.1109/cvpr.2007.383091
Google Scholar
[7]
O. Tuzel, F. Porikli, and P. Meer, "Pedestrian detection via classification on Riemannian manifolds," vol. 30, no. 10, p.1713–1727, 2008.
DOI: 10.1109/tpami.2008.75
Google Scholar
[8]
S. Maji, A. Berg, and J. Malik, "Classification using intersection kernel support vector machines is efficient," in Proc. CVPR, 2008.
DOI: 10.1109/cvpr.2008.4587630
Google Scholar
[9]
Qiang Zhu, Shai Avidan, Mei C. Yeh, and Kwang T. Cheng. Fast human detection using a cascade of histograms of oriented gradients. In CVPR, pages 1491–1498. IEEE Computer Society, 2006.
DOI: 10.1109/cvpr.2006.119
Google Scholar
[10]
NVIDIA Corporation.CUDA C Programming Guide 4.0. 2011, 6
Google Scholar