Influence of Oxygen Annealing on Electromagnetic Properties of Low Temperature Fired Ferrite/Ceramic Composite Materials

Article Preview

Abstract:

Ni-Cu-Zn ferrite (NCZF) /BaTiO3 (BT) composites with different mass ratios of BT/NCZF (x) were prepared at 900°C with suitable fluxing agents. The sintered samples were then annealed in oxygen to reduce the amount of Fe2+ ions. Influence of annealing on electromagnetic properties and frequency characteristics of the samples has been investigated. The Snoek product can be somewhat improved by annealing in samples with x=10wt%, 20wt%, and 30wt%. The dielectric properties can be obviously improved in samples with x=10wt% and 30wt% after annealing in O2.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

215-218

Citation:

Online since:

July 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Zhang, H. Zhong, B. Liu, Y. Jing, Y. Liu, Electromagnetic properties of a new ferrite-ceramic low-temperature cocalcined (LTCC) composite materials, IEEE Trans. Magn. 41 (2005) 3454-3456.

DOI: 10.1109/tmag.2005.854882

Google Scholar

[2] W. Ling, H. Zhang, Y. Li, Y. Liu, Low temperature fired ferrite/ceramic composite materials and their permeability spectra, Adv. Mater. Res. 150-151 (2011) 293-298.

DOI: 10.4028/www.scientific.net/amr.150-151.293

Google Scholar

[3] P. K. Roy, J. Bera, Study on electromagnetic properties of MgCuZn ferrite/BaTiO3 composites, Mater. Chem. Phys. 132 (2012) 354-357.

DOI: 10.1016/j.matchemphys.2011.11.031

Google Scholar

[4] Y. Imanaka, Multilayered Low Temperature Cofired Ceramics (LTCC) Technology, first ed., Springer, New York, 2005.

DOI: 10.1007/b101196

Google Scholar

[5] R. Hsu, T. Peng, J. Jean, Electrical properties of low-fire ferroelectric+ferrimagnetic ceramic composite. Jpn. J. Appl. Phys. 45 (2006) 5841-5846.

DOI: 10.1143/jjap.45.5841

Google Scholar

[6] Ch. Sujatha, K. V. Reddy, K. S. Babu, A. R. Reddy, K. H. Rao, Effects of heat treatment conditions on the structural and magnetic properties of MgCuZn nano ferrite, Ceram. Int. 38 (2012) 5813-5820.

DOI: 10.1016/j.ceramint.2012.04.029

Google Scholar

[7] X. He, Z. Zhang, Z. Ling, Sintering behavior and electromagnetic properties of Fe-deficient NiZn ferrites, Ceram. Int. 34 (2008) 1409-1412.

DOI: 10.1016/j.ceramint.2007.03.031

Google Scholar

[8] G. T. Rado, Magnetic spectra of ferrites, Rev. Mod. Phys. 25 (1953) 81-89.

DOI: 10.1103/revmodphys.25.81

Google Scholar

[9] T. Nakamura, T. Tsutaoka, K. Hatakeyama, Frequency dispersion of permeability in ferrite composite materials, J. Magn. Magn. Mater. 138 (1994) 319-328.

DOI: 10.1016/0304-8853(94)90054-x

Google Scholar

[10] E. Melagiriyappa, H. S. Jayanna, B. K. Chougule, Dielectric behavior and ac electrical conductivity study of Sm3+ substituted Mg-Zn ferrites, Mater. Chem. Phys. 112 (2008) 68-73.

DOI: 10.1016/j.matchemphys.2008.05.014

Google Scholar

[11] J. L. Snoek, Dispersion and absorption in magnetic ferrite at frequencies above one Mc/s, Physica 14 (1948) 207-217.

DOI: 10.1016/0031-8914(48)90038-x

Google Scholar

[12] Gary G. Bush, Generalization of Snoek's limit for modeling initial permeability of magnetic materials, J. Appl. Phys. 63 (1988) 3765-3767.

DOI: 10.1063/1.340661

Google Scholar

[13] I. E. Reimanis, H. J. Kleebe, Reactions in the sintering of MgAl2O4 spinel doped with LiF, Int. J. Mat. Res. 98 (2007) 1273-1278.

DOI: 10.3139/146.101591

Google Scholar

[14] J. Maxwell, Electricity and Magnetism, Oxford University Press, London, 1873.

Google Scholar

[15] K. Wagner, Zur theorie der unvollkommenen dielektrika, Ann. Phys. 40 (1913) 817-855.

DOI: 10.1002/andp.19133450502

Google Scholar

[16] C. G. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies, Phys. Rev. 83 (1951) 121-124.

DOI: 10.1103/physrev.83.121

Google Scholar

[17] M. A. Ahmed, M. A. EI hiti, M. A. Amer, M. K. EI nimr, Dielectric behaviour in Co-substituted NiSb ferrties, J. Materl. Sci. Lett. 16 (1997) 1076-1079.

Google Scholar