The Research of Trivariate Normalized Tight Frames and Pseudoframes of Subspace Based on a Pyramid Decomposition Scheme

Article Preview

Abstract:

The notion of trivariate normalized tight frames and a generalized multiresolution struc-ture and the concept of subspace trivariate affine pseudoframes are introduced. The pyramid decom-position scheme of a generalized multiresolution structure (GMRS) is established, which is generaliz-ation of Mallat's pyramid algorithm. A necessary and sufficient condition for the existence of the pyramid decomposition scheme of space is presented. Moreover, affine trivariate pseudo frame expansions of are constructed by virtue of the pyramid decomposition scheme.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

733-736

Citation:

Online since:

July 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Gabor, Theory of communication: J. Inst. Elec. Engrg., Vol. 93, pp.429-457, (1946).

Google Scholar

[2] R. J. Duffin, A. C. Schaeffer: A class of nonharmonic Fourier series , Trans. Amer. Math. Soc., Vol. 72, pp.341-366,(1952).

DOI: 10.1090/s0002-9947-1952-0047179-6

Google Scholar

[3] I. Daubechies, A. Grossmann, A. Meyer: Painless nonorthogonal expansions. J. Math. Phys.Vol 27, pp.1271-1283,( 1986).

DOI: 10.1063/1.527388

Google Scholar

[4] A.Ron, Z. Shen: Affine systems in L^2(R^d). (II) Dual systems. J. Fourier Anal. Appl. Vol 4, pp.617-637,( 1997).

Google Scholar

[5] S. Li, M. Ogawa: Pseudoframes for Subspaces with Applications. J. FourierAnal.Appl. Vol 10, pp.409-431,(2004).

Google Scholar

[6] S. Li: A Theory of Geeneralized Multiresolution Structure and Pseudoframes of Translates. J. Fourier Anal. Appl. Vol 6(1), pp.23-40, (2001).

Google Scholar

[7] J. J. Benedetto, S. Li: The theory of multiresolution analysis frames and applications to filter banks.Appl. comput. Harmon.Anal.vol5, pp.389-427,( 1998). 4

Google Scholar