Syngas Production from Biomass Gasification Using Copper Slag Catalysts

Article Preview

Abstract:

Catalytic gasification of sawdust biomass was carried out using a specially designed flow-type double beds micro reactor in a two step process: temperature programmed non-catalytic air gasification of biomass was performed in the first bed at 800°C followed by catalytic decomposition gasification of volatile matters (including tars) in the second bed at five different temperatures. The general observation is that the conversion of sawdust biomass increases as the temperature was raised from 750 to 950°C over non-catalyst, raw copper slag or calcined copper slag. High temperature enhances secondary cracking and reforming of tars and heavy hydrocarbons. At the temperature of 950°C, the energy yield (Ey) was 13.2 MJ gas/kg biomass; The energy conversion efficiency (Eff) was 81.05%; The H2 production was 0.0296 kg/kg biomass; The CO production was 0.6685 kg/kg biomass. Furthermore, improvement in conversion of biomass is observed when copper slag is added in secondary reactor as catalysts. The use of copper slag as catalysts significantly contributes to tar conversion in lighter hydrocarbons.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 724-725)

Pages:

313-318

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] W H George, I Sara and C Avelino. Chem. Rev. Vol.106 (2006), pp.4044-4098.

Google Scholar

[2] J. R.Arthur, K. W.Charlotte and H. D.Brian. Science. Vol.311(2006), pp.484-489.

Google Scholar

[3] D.Dayton. NREL/TP-510-32815, 2002, pp.1-33.

Google Scholar

[4] S. David, K. Brian, R. H. R.Julian, Fuel Process. Technol. Vol.73(2001), pp.155-173.

Google Scholar

[5] Orío, A.; Corella, J.; Narváez, I. Ind. Eng. Chem. Res. Vol.36(1997), pp.3800-3808.

Google Scholar

[6] Ana, O.; María, P. A.; Miguel, A. C.; Javier, G.; Eva, F.; José, C. Ind. Eng. Chem.Res. Vol.36(1997),pp.5220-5226.

Google Scholar

[7] Christoph, P.; Hermann, H. Powder Technol. Vol.180(2008), pp.9-16.

Google Scholar

[8] J.Delagado, M.Aznar, J.Corella. Ind Eng Chem Res. Vol.36(1997), p.1535–43.

Google Scholar

[9] A. S.Pekka, O. H.Jouko, I. K. Outi. Fuel. Vol. 76(1997), pp.1117-1127.

Google Scholar

[10] C.José, O.Alberto, T. Jose-Manuel. Energy Fuels, Vol.13 (1999), p.702–709.

Google Scholar

[11] T. J.Wang, J.Chang, X.Q. Cui, Q. Zhang, Y.Fu. Fuel Process. Tech. Vol.87(2006), pp.421-428.

Google Scholar

[12] C. Courson, E. Makaga, C.Petit. Catal. Today. Vol.63(2000), pp.427-437.

Google Scholar

[13] Douglas, W. M. Fuel 1983, 62, 170-175.

Google Scholar

[14] J. V.Michael, T. B. Xis. Fuel. Vol.57(1978), pp.194-200.

Google Scholar

[15] S.Rapagnà, N. Jand, A.Kiennemann. Biomass Bioenergy. Vol. 19(2000),pp.187-197.

Google Scholar

[16] L.Devia, K. J.Ptasinskia, F.J.J.G. Janssena, S.V.B. Paasenb. Renewable Energy. Vol. 30(2005), pp.565-587.

Google Scholar

[17] D.Lopamudra, J. P.Krzysztof, J.J.G. J Frans. Fuel Process. Tech. Vol. 86(2005),pp.707-730.

Google Scholar

[18] L.Devi, K.J. Ptasinski, F.J.J.G. Janssen. Fuel Process. Technol. Vol. 86(2004), p.707.

Google Scholar

[19] L.Devi, M.Craje, P.Thüne. Appl. Catal., A. Vol.294(2005),pp.68-79.

Google Scholar

[20] B.Gorai, R. K.Jana. Resources, Conservation and Recycling. Vol. 39(2003), pp.299-313.

Google Scholar

[21] L.Magín, J. H.Juan, P.Amparo, L.Julio. Fuel Process. Technol. Vol. 89(2008), pp.828-837.

Google Scholar