[1]
Weng Huan-xin. Sludge harmless, reduction, resource processing technology[M]. Beijing: Science Press, 2009.
Google Scholar
[2]
Lee D J., Spinosa L., Liu J C. 2002. Towards sustainable sludge management[J]. Water, 2002, 21: 22~23.
Google Scholar
[3]
Spinosa, L., From sludge to resources through biosolids[J]. Water science and technology, 2004. 50(9): 1~8.
Google Scholar
[4]
Forster, C.F., The rheological and physico-chemical characteristics of sewage sludges[J]. Enzyme and microbial technology, 2002. 30(3): 340~345.
DOI: 10.1016/s0141-0229(01)00487-2
Google Scholar
[5]
Cenni R. Legislative and environmental issues on the use of ash from coal and municipal sewage sludge co-firing as construction material[J]. Waste management, 2001, 21(1): 17~31.
DOI: 10.1016/s0956-053x(00)00074-x
Google Scholar
[6]
Zorpas A A. Heavy metal uptake by natural zeolite and metals partitioning in sewage sludge compost[J]. Bioresource technology, 2000, 72(2): 113~119.
DOI: 10.1016/s0960-8524(99)00110-8
Google Scholar
[7]
HAMILTON C J.Gasification as an innovative method of sewage sludge disposal[J]. Water Environ Manage, 2000, 14(2): 89~93.
Google Scholar
[8]
PETERSEN I,WERTHER J.Experimental investigation and modeling of gasification of sewage sludge in the circulating fluidized bed[J]. Chem Eng Process, 2005, 44(7): 717~736.
DOI: 10.1016/j.cep.2004.09.001
Google Scholar
[9]
Li Hai-ying. Biological sludge pyrolysis recycling technology research [D]. Tianjin University Master Thesis, 2006.
Google Scholar
[10]
MANYA J J, SANCHEZ J L, GONZALO A, ARAUZO J. Air gasification of dried sewage sludge in a fluidized bed-effect of the operation on conditions and in-bed use of alumina[J].Energy Fuels, 2005, 19(2):629~636.
DOI: 10.1021/ef0497614
Google Scholar
[11]
MARRERO T W,MCAULEY B P,SUTTERLIN W R, STEVEN MORRIS J,MANAHAN S E.Fate of heavy metals and radioactive metals in gasification of sewage sludge[J].Waste Manage, 2004, 24(2):193~198.
DOI: 10.1016/s0956-053x(03)00127-2
Google Scholar
[12]
DOGRU M, MIDILLI A, HOWARTH C R. Gasification of sewage sludge using a throated downdraft gasifier and uncertainty analysis[J].Fuel Process Technology, 2002, 75(1): 55~82.
DOI: 10.1016/s0378-3820(01)00234-x
Google Scholar
[13]
Li Ai-min, Gao Ning-bo, Li Run-dong. Emission characteristics of NOx and SO2 in sewage sludge gasification and incineration[J]. Combustion science and technology, 2004, 10(4): 289~299.
Google Scholar
[14]
Ayhan Demirabs. Pyrolysis of municipal plastic wastes for recovery of gasoline-range hydrocarbons [J]. J. Appl. Pyrolysis, 2004, 72: 97~102.
DOI: 10.1016/j.jaap.2004.03.001
Google Scholar
[15]
The pyrolysis characteristics of sludge and new method of resource utilization[D]. China University of Geosciences master thesis, 2005.
Google Scholar
[16]
Inguanzo M., Dominguez A., Menendez J.A., et al. On the pyrolysis of sewage sludge: the influence of pyrolysis conditions on solid, liquid and gas fractions[J]. Journal of Analytical and Applied Pyrolysis, 2002, 63(1): 209~222.
DOI: 10.1016/s0165-2370(01)00155-3
Google Scholar
[17]
Shao Jing-ai. Research of experiments and model of city sewage sludge pyrolysis[D]. Huazhong University of Science and Technology PhD dissertation, 2008.
Google Scholar
[18]
Waste treatment technical manual - solid waste volume [M]. Beijing: Chemical Industry Press, 2000.
Google Scholar
[19]
Weisweiler W, Keller A. The Problem of Gaseous Emissions of Mercury in Cement Plants[J]. Zement-Kalk-Gips, 1992, 45(10): 319~321.
Google Scholar