A Routine Method for Simultaneous Determination of Three Classes of Antibiotics in Aquaculture Water by SPE-RPLC-UV

Article Preview

Abstract:

This work describes a routine monitoring method for simultaneous determination of three classes of veterinary antibiotics (quinolones, sulfonamides, and tetracylines) in the aquaculture water. The selected eleven pharmaceuticals include four quinolones (enoxacin, ofloxacin, ciprofloxacin and lomefloxacin), four sulfonamides (sulfadiazine, sulfadimidine, sulfamethoxazole and sulfisoxazole) and three tetracyclines (tetracycline, chlortetracycline, and doxycycline). The entire procedures for pre-concentration by solid phase extraction (SPE) using Oasis HLB, and liquid chromatography-ultraviolet spectrometry (LC-UV) quantification were examined and optimized. The chromatographic separations were performed on a Kromasil 100-C18 (250 mm×4.6 mm, 5 μm) column, using 0.1% (v/v) formic acid in water and acetonitrile as mobile phase with gradient elution, and 280 nm as the detective wavelength. The recovery efficiencies were found to be 85-117% for quinolones, 81-109% for sulfonamides, and 84-110% for tetracyclines at three spiking levels (5, 10 and 50 μg/L). The developed method was applied to real water samples collected from four aquafarms located in Yichang, Hubei Province, China. Three or four tested antibiotics were detected in all water samples, with concentrations ranging from 0.65 μg/L to 4.33 μg/L. The method is convenient and rapid, and provides a quantitative measurement of multi-residue antibiotics without complex and expensive analytical equipment.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

1253-1259

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] P. Verlicchi, M.Al. Aukidy and E. Zambello: Sci. Total Environ. Vol. 429 (2012), p.123

Google Scholar

[2] M.J. Benotti, R.A. Trenholm, B.J. Vanderford, J.C. Holady, B.D. Stanford and S.A. Snyder: Environ. Sci. Technol. Vol. 43 (2009), p.597

DOI: 10.1021/es801845a

Google Scholar

[3] M.E. Lindsey, M. Meyer and E.M. Thurman: Anal. Chem. Vol. 73 (2001), p.4640

Google Scholar

[4] J. Feitosa-Felizzola and S. Chiron: J. Hydrol. Vol. 364 (2009), p.50

Google Scholar

[5] L.-J. Zhou, G.-G. Ying, S. Liu, J.-L. Zhao, F. Chen, R.-Q. Zhang, F-Q. Peng and Q.-Q. Zhang: J. Chromatogr. A. Vol. 1244 (2012), p.123

Google Scholar

[6] N. Dorival-García, A. Zafra-Gómez, S. Cantarero, A. Navalón and J.L. Vílchez: Microchem. J. Vol. 106 (2013), p.323

Google Scholar

[7] H. Yan, H. Wang, X. Qin, B. Liu and J. Du: J. Pharmaceut. Biomed. Vol. 54 (2011), p.53

Google Scholar

[8] A.V. Herrera-Herrera, J. Hernandez-Borges, T.M. Borges-Miquel and M.A. Rodriguez-Delgado: J. Pharmaceut. Biomed. Vol. 75 (2013), p.130

Google Scholar

[9] I. Michael, L. Rizzo, C.S. McArdell, C.M. Manaia, C. Merlin, T. Schwartz, C. Dagot and D. Fatta-Kassinos: Water Res. Vol. 47 (2013), p.957

DOI: 10.1016/j.watres.2012.11.027

Google Scholar

[10] R. Li, Y. Zhang, C. Charles. Lee, L. Liu and Y. Huang: J. Sep. Sci. Vol. 34 (2011), p.1508

Google Scholar

[11] E. Turiel, G. Bordin and A.R. Rodríguez, Trace: J. Chromatogr. A. Vol. 1008 (2003), p.145

Google Scholar

[12] J.L. Santos, I. Aparicio, E. Alonso and M. Callejón: Anal. Chim. Acta Vol. 550 (2005), p.116

Google Scholar

[13] M. Prat, J. Benito, R. Compañó, J. Hernández-Arteseros and M. Granados: J. Chromatogr. A. Vol. 1041 (2004), p.27

Google Scholar

[14] Y. Han, Q.J. Wang, C.H. Mo, Y.W. Li, P. Gao, Y.P. Tai, Y. Zhang, Z.L. Ruan and J.W. Xu: Environ. Pollut. Vol. 158 (2010), p.2350

Google Scholar

[15] L. Shi, X.F. Zhou, Y.L. Zhang and G.W. Gu: Water Sci. Technol. Vol. 59 (2009), p.805

Google Scholar

[16] L. Tong, P. Li, Y. Wang and K. Zhu: Chemosphere Vol. 74 (2009), p.1090

Google Scholar

[17] R. López-Serna, S. Pérez, A. Ginebreda, M. Petrović and D. Barceló: Talanta Vol. 83 (2010), p.410

Google Scholar

[18] N. Le-Minh, R.M. Stuetz and S.J. Khan: Talanta Vol. 89 (2012), p.407

Google Scholar

[19] H. Shaaban and T. Górecki: Talanta Vol. 100 (2012), p.80

Google Scholar

[20] B. Kasprzyk-Hordern, R.M. Dinsdale and A.J. Guwy: J. Chromatogr. A. Vol. 1161 (2007), p.132

Google Scholar

[21] M. Ibáñez, C. Guerrero, J.V. Sancho and F. Hernández: J. Chromatogr. A. Vol. 1216 (2009), p.2529

Google Scholar

[22] F. Tamtam, F. Mercier, J. Eurin, M. Chevreuil and B. Le Bot: Anal. Bioanal. Chem. Vol. 393 (2009), p.1709

DOI: 10.1007/s00216-008-2576-9

Google Scholar

[23] B. Li, T. Zhang, Z. Xu, H.H. Ping Fang: Anal. Chim. Acta Vol. 645 (2009), p.64

Google Scholar

[24] W.L. Shelver, H. Hakk, G.L. Larsen, T.M. DeSutter and F.X. Casey: J. Chromatogr. A. Vol. 1217 (2010), p.1273

Google Scholar

[25] S. Kim, J. Cho, I. Kim, B. Vanderford and S. Snyder: Water Res. Vol. 41 (2007), p.1013

Google Scholar

[26] M.S. Díaz-Cruz and D. Barceló: Anal. Bioanal. Chem. Vol. 386 (2006), p.973

Google Scholar

[27] J-Y. Pailler, A. Krein, L. Pfister, L. Hoffmann and C. Guignard: Sci. Total Environ. Vol. 407 (2009), p.4736

Google Scholar

[28] M. Gros, M. Petrovic and D. Barceló: Anal. Chem. Vol. 81 (2009), p.898

Google Scholar