The Toxicity Assay of Artemia salina as a Biological Model for the Preliminary Toxic Evaluation of Chemical Pollutants

Article Preview

Abstract:

In order to achieve a good correlation between toxicology and Artemia salina lethality test, several chemical pollutants were examined in A. salina test, with the purpose to use the latter as convenient preliminary protocol for toxic activity. During the test, it was observed the effect of a particular lethal dose or only a knockdown in the arthropod of HgCl2, KCN, K2Cr2O7, C6H6 and C6H6Cl6. The 24h LC50 of these five chemical pollutants to the artemia nauplius was 0.12±0.09, 0.06±0.12, 0.72±0.21, 1.57±0.58 and 0.44±0.10 mg/L, respectively. The results of the A. salina lethality test for the chemical substances are essentially in agreement with those described in literature for toxic activity.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

230-233

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Pelka, C. Danzl, W. Distler and A. Petschelt: J. Dent. Vol. 28 (2000), pp.341-345.

Google Scholar

[2] G. Persoone and P.G. Wells, in: Artemia in Aquatic Toxicology: A Review, edited by P. Bengtson, D.A. Decleir and W. Jaspers, volume I of Artemia Research and Its Applications, Morphology, Genetics, Strain Characterization, Toxicology, Sorgellos, Universa Press (1987).

Google Scholar

[3] P. Vanhaecke and G. Persoone, in: Report on an Intercalibration Exercise on a Short-term Standard Toxicity Test with Artemia nauplii (ARC-test), edited by H. Leclerc and D. Dive, Les tests de toxicité aigue en milieu aquatique. Les colloques de l'INSERM. Ministère de la Santé, Institut National de la Santé et de la Recherche Médicale (1981).

DOI: 10.1002/aheh.19840120513

Google Scholar

[4] S. Sánchez-Fortún, F. Sanz and M.V. Barahona: Arch. Environ. Contam. Toxicol. Vol. 31 (1996), pp.391-398.

Google Scholar

[5] S. Sánchez-Fortún, F. Sanz, A. Santa-Maria, J.M. Ros, M.L. De Vicente, M.T. Encinas, E. Vinagre and M.V. Barahona: Bull. Environ. Contam. Toxicol. Vol. 59 (1997), pp.445-451.

DOI: 10.1007/s001289900498

Google Scholar

[6] F.A. Oladimeji, O.O. Orafidiya, T.A.B. Ogunniyi and T.A. Adewunmi: J. Ethnopharm. Vol. 72 (2000), pp.305-311.

Google Scholar

[7] Y.C. Yang, H.S. Lee, S.H. Lee, M. Clark and Y.J. Ahn: Int. J. Parasitol. Vol. 35 (2005), pp.1595-1600.

Google Scholar

[8] Y.C. Yang, S.H. Lee, D.H. Choi and Y.J. Ahn: J. Agric. Food Chem. Vol. 51 (2003), pp.4884-4888.

Google Scholar

[9] A.H. Jr Merrill, G. van Echten, E. Wang and K. Sandhoff: J. Biol. Chem. Vol. 268 (1993), pp.27299-27306.

Google Scholar

[10] P. Dvořák, K. Beňová, M. Žďárský, Z. Sklenář and A. Havelková: Acta. Vet. Brno. Vol. 79 (2010), p. S47-S53.

DOI: 10.2754/avb201079s9s047

Google Scholar

[11] J.L. McLaughlin, C.J. Chang and D.L. Smith, in: Simple Bench-top Biossays (Brine Shrimp and Potato Disk) for the Discovery of Plant Antitumor Compounds-Review of Recent Progress in Human Medicinal Agents from Plants, edited by in A.D. Kinghorn and M.F. Balandrini, Human Medicinal Agents from Plants, Oxford University Press (1993).

DOI: 10.1021/bk-1993-0534.ch009

Google Scholar

[12] S. Areekul and R.F. Harwood: J. Agric. Food Chem, Vol. 1 (1960), pp.32-36.

Google Scholar

[13] A.B. Robinson, K.F. Nanly, M.P. Anthony, J.F. Catchpool and L. Pauling: Science Vol. 149 (1965), pp.1255-1258.

Google Scholar

[14] J. Harwing and P. Scott: App. Microbiol. Vol. 21 (1971), pp.1011-1016.

Google Scholar