Efficient Removal of Cd2+ by the Mesoporous Silica Functionalized by APTES

Article Preview

Abstract:

Amino-functionalized mesoporous silica (AFMS) with high amino loading, high surface area, and large pore size was synthesized using the anionic surfactant N-lauroylsarcosine sodium (Sar-Na) as template and 3-aminopropyltriethoxysilane (APTES) as co-structure directing agent (CSDA). The synthesized AFMS was characterized by N2 adsorption-desorption, TEM and elemental analyzer. The results of the removal of Cd2+ from aqueous solution showed that the pH value of aqueous solution affected the removal efficiency of Cd2+ greatly, and that unary adsorption isotherm of Cd2+ on the AFMS was well described by the Sips isotherm model, in which the adsorption capacity was 2.43 mmol/g for Cd2+, much higher than the literature data.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2409-2412

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.A. Davis, B. Volesky and R.H.S.F. Vieira: Water Res. Vol. 34 (2000), p.4270

Google Scholar

[2] A. Sari, D. Mendil, M. Tuzen and M. Soylak: Chem. Eng. J. Vol. 144 (2008), p.1

Google Scholar

[3] D. Pérez-Quintanilla, A. Sánchez, I. del Hierro, M. Fajardo and I. Sierra: J. Colloid Interface Sci., Vol. 313 (2007), p.551

DOI: 10.1016/j.jcis.2007.04.063

Google Scholar

[4] M. Amini, H. Younesi and N. Bahramifar: Colloids Surf. Physicochem. Eng. Aspects, Vol. 337 (2009), p.67

Google Scholar

[5] N. Prakash, S. Latha, P.N. Sudha and N.G. Renganathan: Environ. Sci. Pollut. Res. Vol. 20 (2013), p.925

Google Scholar

[6] A.A. Zamani, R. Shokri, M.R. Yaftian, A.H. Parizanganeh: Int. J. Environ. Sci. Technol. Vol. 10 (2013), p.93

Google Scholar

[7] M. Machida, B. Fotoohi, Y. Amamo, T. Ohba, H. Kanoh, L. Mercier: J. Hazard. Mater. Vol. 221 (2012), p.220

Google Scholar

[8] E. Da'na, and A. Sayari: Chem. Eng. J. Vol. 166 (2011), p.445

Google Scholar

[9] V. Manu, M.M. Haresh, C.B. Hari and V.J. Raksh: Ind. Eng. Chem. Res. Vol. 48 (2009), p.8954

Google Scholar

[10] S.Y. Hao, Q. Xiao, H. Yang, Y.J. Zhong, F. Pepe and W.D. Zhu: Micropor. Mesopor. Mater. Vol. 132 (2010), P. 552

Google Scholar

[11] M. Amini, H. Younesi, N. Bahramifar, A.A.Z. Lorestani, F. Ghorbani, A. Daneshi, and M. Sharifzadeh: J. Hazard. Mater. Vol. 154 (2008), P. 694

DOI: 10.1016/j.jhazmat.2007.10.114

Google Scholar

[12] S. Che, A.E. Garcia-Bennett, T. Yokoi, K. Sakamoto, H. Kunieda, O. Terasaki, and T. Tatsumi: Nat. Mater. Vol. 2 (2003), P. 801

Google Scholar

[13] D.D. Do, Adsorption Analysis: Equilibrium and Kinetics, (Imperial College Press, London, 1998).

Google Scholar