Evaluation of Substances Released from Hydrothermal Pretreated Municipal Sludge and Performance of Hydrogen Production by the Corresponding Supernatant

Article Preview

Abstract:

Response surface methodology (RSM) with central composite design was adopted to investigate the optimum condition for carbohydrate released from hydrothermal pretreated sludge in an autoclave used for WAO (wet air oxidation). Temperature, time and stirring rate were chosen as variables. The maximum carbohydrate release (1356.8 mg/L) was estimated at the temperature of 161.2 °C, the time of 48 min and the stirring rate of 661 r/min. This statistical method could precisely optimize reaction conditions and predict the experimental data. Only 11.2 mL methane was generated with little hydrogen production of raw sludge. In contrast, hydrogen production potential of 25 mL was reached by using supernatant as substrate with a COD removal of 78.14%. Hydrogen yield was increased from 0.13 mL/g-VS (raw sludge) to 13.16 mL/g-VS (supernatant of pretreated sludge).

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2468-2475

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] H. Odegaard. Sludge minimization technologies-an overview. Water Sci Technol. 2004; 49(10): 31-40.

Google Scholar

[2] J. L. Wang, W. Wei. Comparison of different pretreatment methods for enriching hydrogen-producing bacteria from digested sludge. Int J Hydrogen Energy. 2008; 33: 2934-41.

DOI: 10.1016/j.ijhydene.2008.03.048

Google Scholar

[3] R. V. S. Lívian, C. O. Tatiane, F. S. Thiago, M. Andrea, C. C. Magali, M. M. O. Edna, S. F. L. Viridiana. Hydrogenase activity monitoring in the fermentative hydrogen production using heat pretreated sludge: A useful approach to evaluate bacterial communities performance. Int J Hydrogen Energy. 2011; 36(13): 7543-9.

DOI: 10.1016/j.ijhydene.2011.03.119

Google Scholar

[4] D. Li, Z. H. Yuan, Y. M. Sun, L. L. Ma. Evaluation of pretreatment methods on harvesting hydrogen producing seeds from anaerobic digested organic fraction of municipal solid waste (OFMSW). Int J Hydrogen Energy. 2010; 35(15): 8234-40.

DOI: 10.1016/j.ijhydene.2009.12.058

Google Scholar

[5] L. Appels, J. Dgreve, B. V. Bruggen, J. V. Impe, R. Dewil. Influence of low temperature thermal pre-treatment on sludge solubilisation, heavy metal release and anaerobic digestion. Bioresour Technol. 2010; 101: 5743-8.

DOI: 10.1016/j.biortech.2010.02.068

Google Scholar

[6] H. N. Gavala, U. Yenal, I. V. Skiadas, P. Westermann, B. K. Ahring. Mesophilic and thermophilic anaerobic digestion of primary and secondary sludge. Effect of pre-treatment at elevated temperature. Water Res. 2003; 37: 4561-72.

DOI: 10.1016/s0043-1354(03)00401-9

Google Scholar

[7] W. Qiao, C. Peng, W. Wang, Z. Z. Zhang. Biogas production from supernatant of hydrothermally treated municipal sludge. Bioresour Technol. 2011; 102: 9904-11.

DOI: 10.1016/j.biortech.2011.08.037

Google Scholar

[8] J. Q. Lu, H. N. Gavala, I. V. Skiadas, M. Zuzana, B. K. Ahring. Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step. J Environ manage. 2008; 88: 881-9.

DOI: 10.1016/j.jenvman.2007.04.020

Google Scholar

[9] D. C. Stuckey, P. L. Mccarty. The effect of thermal pretreatment on the anaerobic biodegradability and toxicity of waste activated sludge. Water Res. 1984; 18(11): 1343-53.

DOI: 10.1016/0043-1354(84)90002-2

Google Scholar

[10] G. Luo, L. Xie, Z. H. Zou, W. Wang, Q. Zhou, H. Shim. Anaerobic treatment of cassava stillage for hydrogen and methane production in continuously stirred tank reactor (CSTR) under high organic loading rate (OLR). Int J Hydrogen Energy. 2010; 35(21): 11733-7.

DOI: 10.1016/j.ijhydene.2010.08.033

Google Scholar

[11] W. Q. Guo, Z. H. Meng, N. Q. Ren, Z. P. Zhang, F. Y. Cui. Optimization of key variables for the enhanced production of hydrogen by Ethanoligenens harbinense W1 using response surface methodology. Int J Hydrogen Energy. 2011; 36: 5843-8.

DOI: 10.1016/j.ijhydene.2010.11.004

Google Scholar

[12] American Public Health Association (APHA). Standard methods for the examination of water and wastewater. 20th ed;1998America, Washington D C.

Google Scholar

[13] C. Wilson, J. T. Novak. Hydrolysis of macromolecular components of primary and secondary wastewater sludge by thermal hydrolytic pretreatment. Water Res. 2009; 43(18): 4489-98.

DOI: 10.1016/j.watres.2009.07.022

Google Scholar

[14] M. Naoyuki, I. Michihiko, F. Kenji, F. Masanori. Fraction and characterization of brown colored components in heat treatment liquor of waste sludge. Water Res. 1996; 30(6): 1361-8.

DOI: 10.1016/0043-1354(95)00315-0

Google Scholar

[15] C. C. Wang, C. W. Chang, C. P. Chu, D. J. Lee, B. V. Chang, C. S. Liao, J. H. Tay. Using filtrate of waste biosolids to effectively produce bio-hydrogen by anaerobic fermentation. Water Res. 2003; 37(11): 2789-93.

DOI: 10.1016/s0043-1354(03)00004-6

Google Scholar

[16] B. Y. Xiao, J. X. Liu. Effects of various pretreatments on biohydrogen production from sewage sludge. Chinese Science Bulletin. 2009; 54(12): 2038-44.

DOI: 10.1007/s11434-009-0100-z

Google Scholar

[17] E. Kan. Effects of pretreatments of anaerobic sludge and culture conditions on hydrogen productivity in dark anaerobic fermentation. Renewable Energy. 2013; 49: 227-31.

DOI: 10.1016/j.renene.2012.01.026

Google Scholar

[18] L. Guo, X. M. Li, G. M. Zeng, Y. Zhou. Effective hydrogen production using waste sludge and its filtrate. Energy. 2010; 35(9): 3557-62.

DOI: 10.1016/j.energy.2010.04.005

Google Scholar

[19] K. Y. Show, D. J. Lee, J. H. Tay, C. Y. Lin, J. S. Chang. Biohydrogen production: Current perspectives and the way forward. Int J Hydrogen Energy. 2012; 37(20): 15616-31.

DOI: 10.1016/j.ijhydene.2012.04.109

Google Scholar

[20] D. Karadag, J. A. Puhakka. Direction of glucose fermentation towards hydrogen or ethanol production through on-line pH control. Int J Hydrogen Energy. 2010; 35(19): 10245-51.

DOI: 10.1016/j.ijhydene.2010.07.139

Google Scholar