Feasibility Analysis of Anaerobic Biocathode Enhancing Biological Degradation of Recalcitrant Chlorinated Nitroaromatic Compounds (CNAs)

Article Preview

Abstract:

Anaerobic biological technology and bioelectrochemical technology are regarded as promising sustainable wastes treatment processes. With biocatalysis in BESs anode or cathode, various pollutants can be removed. The pollutants range from nitrogen and sulfur to complex compounds. However, the investigation on recalcitrant wastes removal with biocathode has only been reported recently. Recalcitrant wastes, especially chlorinated nitroaromatic compounds, are highly persistent and toxic environmental pollutions which should be removed before discharging to environment. This paper provides a review on anaerobic biocathode BESs for recalcitrant wastes treatment and the feasibility of this system for CANs transformation. It is expected that anaerobic biocathode BESs can provide an appropriate condition for these compounds to transform to easily degradable forms. The technical challenges for future research are also discussed.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

2483-2491

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T.Y. Gao, G.W. Gu, Q. Zhou (In Chinese ): Water Pollution Control Engineering 3rd version. (Hgher Education Press 2007).

Google Scholar

[2] A.J. Wang, H.Y. Cheng, B. Liang, N.Q. Ren, D. Cui, N. Lin, B.H. Kim and K. Rabaey: Environ. Sci. Technol. Vol. 45 (2011), p.10186

Google Scholar

[3] G. Velvizhi, S.V. Mohan: Biocatalyst behavior under self-induced electrogenic microenvironment in comparison with anaerobic treatment: Evaluation with pharmaceutical wastewater for multi-pollutant removal. Bioresour. Technol. Vol. 102 (2011), p.10784

DOI: 10.1016/j.biortech.2011.08.061

Google Scholar

[4] Potter MC: Electrical effects accompanying the decomposition of organic compounds. (Proc Roy Soc, London, 1912)

Google Scholar

[5] P. Clauwaert, D. Van Der Ha, N. Boon, K. Verbeken, M. Verhaege, K. Rabaey and W. Verstraete: Environ. Sci. Technol Vol. 41 (2007), p.7564

DOI: 10.1021/es0709831

Google Scholar

[6] A.J.M. Stams, F.A.M. De Bok, C.M. Plugge, M.H.A. Van Eekert, J. Dolfing, G. Schraa: Environ. Microbiol. Vol. 8 (2006), p.371

DOI: 10.1111/j.1462-2920.2006.00989.x

Google Scholar

[7] J.R. Kim: Application of Bioelectrochemical Process (BES) for Electricity Generation and Sustainable Wastewater Treatment. (EU-Korea Conference on Science and Technology 2010).

DOI: 10.1007/978-3-642-13624-5_2

Google Scholar

[8] J.J. Kan, L. Hsu, A.C.M. Cheung, M. Pirbazari and K.H. Nealson: Environ. Sci. Technol. Vol. 45 (2011), p.1139

Google Scholar

[9] L.Lu, D.F. Xing, T.H. Xie, N.Q. Ren, B.E. Logan: Biosens Bioelectron Vol. 25 (2010), p.2690

Google Scholar

[10] R.A. Rozendal, E. Leone, J. Keller and K. Rabaey: Electrochem Commun Vol. 11 (2009), p.1752

Google Scholar

[11] M. Villano, F. Aulenta, C. Ciucci, T. Ferri, A. Giuliano and M. Majone: Biores Technol Vol. 101 (2010), p.3085

Google Scholar

[12] K.J.J. Steinbusch, H.V.M. Hamelers, J.D. Schaap, C. Kampman, A.C.J.N. Buisman: Environ. Sci. Technol. Vol. 44 (2010), p.513

Google Scholar

[13] K.B. Gregory, D.R. Bond and D. Lovley: Environ. Microbiol. Vol.6 (2004), p.596

Google Scholar

[14] K. Rabaey, L. Angenent, U. Schrö der and J. Keller: Bioelectrochemical Systems :From Extracellular Electron Transfer to Biotechnological Application[C]. (IWA .London 2010).

Google Scholar

[15] R.A. Rozendal, H.V.M. Hamelers and J.N. Cees: Environ. Sci. Technol. Vol. 40 (2006), p.5206

Google Scholar

[16] H. Liu, H.Q. Hu and Y.Z. Fan: Water Res. Vol. 42 (2008), p.4172

Google Scholar

[17] J.R. Kim, S.H. Jung, J.M. Regan and B.E. Logan: Bioresour. Technol. Vol. 98 (2007), p.2568

Google Scholar

[18] J. Li, G.L. Liu, R.D. Zhang, Y. Luo, C.P. Zhang and M.C. Li: Bioresour. Technol. Vol. 101 (2010), p.4013

Google Scholar

[19] A.J. Wang, D. Cui, H.Y. Cheng, Y.Q. Guo, F.Y. Kong, N.Q. Ren, W.M. Wu: J. Hazard. Mater. Vol. 199–200 (2012), p.401

Google Scholar

[20] D. Cui, F.Y. Kong, B. Liang, H.Y. Cheng, D. Liu, Q. Sun and A.J. Wang: J Environment Analytic Toxicol S:3(2011)

Google Scholar

[21] Y. Mu, K. Rabaey, R.A. Rozendal, Z. Yuan and J. Keller: Environ. Sci. Technol. Vol. 43 (2009), p.5137

Google Scholar

[22] D. Cui, Y.Q. Guo, H.Y. Cheng, B. Liang, F.Y. Kong, H.S. Lee and A.J. Wang: J. Hazard. Mater. Vol. 239–240 (2012), p.257

Google Scholar

[23] J. Sun, Z. Bi, B. Hou, Y.Q. Cao and Y.Y. Hu: Water Res. Vol. 45 (2011), p.283

Google Scholar

[24] S.M. Strycharz, S.M. Gannon, A.R. Boles, A.E. Franks, K.P. Nevin and D.R. Lovley: Environ. Microbiol. Reports. (2010)Vol. 2 (2010), p.289

Google Scholar

[25] F. Aulenta, A. Canosa, P. Reale, S. Rossetti, S. Panero, and M. Majone: Biotechnol. Bioeng. Vol.103 (2009), p.85

Google Scholar

[26] F. Aulenta, P. Reale, A. Catervi, S. Panero, M. Majone: Electrochim. Acta. Vol. 53 (2008), p.5300

DOI: 10.1016/j.electacta.2008.02.084

Google Scholar

[27] F. Aulenta, L. Tocca, R. Verdini, P. Reale and M. Majone: Environ. Sci. Technol. Vol. 45 (2011), p.8444

DOI: 10.1021/es202262y

Google Scholar

[28] M. Tandukar, S.J. Huber, T. Onodera, S.G. Pavlostathis: Environ. Sci. Technol. Vol. 43 (2009), p.8159

Google Scholar

[29] L.P. Huang, X.L. Chai, G.H. Chen and B.E. Logan: Environ. Sci. Technol. Vol. 45 (2011), p.5025

Google Scholar

[30] L.P. Huang, J.W. Che, X. Quan and F.L. Yang: Bioprocess Biosyst Eng. Vol. 33 (2010), p.937

Google Scholar

[31] L.P. Huang, X.L. Chai, S.A. Cheng and G.H. Chen: Chem. Eng. J. Vol. 166 (2011), p.652

Google Scholar

[32] L. Hsu, S.A. Masuda, K.H. Nealson and M. Pirbazari: RSC Adv. Vol. 2 (2012), p.5844

Google Scholar

[33] K.B. Gregory and D.R. Lovley: Environ. Sci. Technol. Vol. 39 (2005), p.8943

Google Scholar

[34] H.C. Tao, M. Liang, W. Li, L.J. Zhang, J.R. Ni and W.M. Wu: J. Hazard. Mater. Vol. 189 (2011), p.186

Google Scholar

[35] A. Schenzle, H. Lenke, J.C. Spain and H.J. Knackmuss: Appl. Environ. Microbiol. Vol. 65 (1999), p.2317

Google Scholar

[36] T. Gorontzy, J. Küver and K.H. Blotevogel: J. Gen. Microbiol. Vol. 139 (1993), p.1331.

Google Scholar

[37] F.M. Dunnivant, R.P. Schwarzenbach and D.L. Macalady: Environ. Sci. Technol. Vol. 26 (1992), p.2133

Google Scholar

[38] H.Z. Lin, L. Zhu, X.Y. Xu, L.L. Zang and Y. Kong: J Chem Technol Biotechnol. Vol. 86 (2011), p.290

Google Scholar

[39] F. Cárdenas-Lizana, D. Lamey, N. Perret, S. Gómez-Quero, L. Kiwi-Minsker and M.A. Keane: Catal. Commun. Vol. 21 (2012), p.46

DOI: 10.1016/j.catcom.2012.01.027

Google Scholar

[40] E.P. Kuhn and J.M. Sufllta: Environ. Sci. Technol. Vol. 23 (1989), p.848.

Google Scholar

[41] P. Gan, T.T. Zhu, Y.B. Fan, M.J. Wang: Techniques and Equipment for Environmental Pollution Control. Vol.1 (2000), p.1 (In Chinese)

Google Scholar

[42] C.S. Butler, P. Clauwaert, S.J. Green, W. Verstraete and R. Nerenberg: Environ. Sci. Technol. Vol. 44 (2010), p.4685

Google Scholar

[43] F. Aulenta, P. Reale, A. Canosa, S. Rossetti, S. Panero and M. Majone: Biosens. Bioelectron. Vol. 25 (2010), p.1796

Google Scholar

[44] S.M. Strycharz, T.L. Woodard, J.P. Johnson, K.P. Nevin, R.A. Sanford, F.E. Löffler and D.R. Lovley: Appl. Environ. Microbiol. Vol.74 (2008), p.5943

DOI: 10.1128/aem.00961-08

Google Scholar