[1]
E.G. Gregorich, M.R. Carter, D.A. Angers, C.M. Monreal, B.H. Ellert: Towards a minimum data set to assess soil organic matter quality in agricultural soils. Canadian Journal of Soil Science Vol.74 (1994), pp.367-385.
DOI: 10.4141/cjss94-051
Google Scholar
[2]
J.L. Richardson, Meds.Vepraskas: Wetland soils: genesis, hydrology, landscapes, and classification. Boca Raton, FL, Taylor and Frances. (2000).
DOI: 10.1201/9781420026238.ch7
Google Scholar
[3]
V. Beumer, G. van Wirdum, B.Beltman, J. Griffioen, A.P. Grootjans, J.T.A. Verhoeven: Geochemistry and flooding as determining factors of plant species compostion in Duteh winter-flooded riverine grasslands. Science of the Total Environment., Vol. 402(2008), pp.70-81.
DOI: 10.1016/j.scitotenv.2008.03.044
Google Scholar
[4]
D.V. Nelson, L.E. Sommers: Total carbon, organic carbon, and organic matter. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis. Part 2. Chemical and Biological Methods, American Society of Agronomy and Soil Science of America, Madison, WI, (1982), pp.539-579.
DOI: 10.2134/agronmonogr9.2.2ed.c29
Google Scholar
[5]
R.H. Brink, P. Dubar, D.L. Linch: Measurement of carbohydrates in soil hydrolysates with anthrone. Soil Science Vol.89 (1960), pp.157-166.
DOI: 10.1097/00010694-196003000-00006
Google Scholar
[6]
P.C. Brookes, A. Landman, G. Pruden, D.S. Jenkinson: Chloroform fumigation and release of soil nitrogen: a rapid direct extraction method to measure microbial biomass nitrogen in soil. Soil Biol. Biochem. Vol.17 (1985), pp.837-842.
DOI: 10.1016/0038-0717(85)90144-0
Google Scholar
[7]
E.D. Vance, P.C. Brookes, D.S. Jenkinson: An extraction method for measuring soil microbial biomass C. Soil Biol. Biochem. Vol. 19 (1987), pp.703-707.
DOI: 10.1016/0038-0717(87)90052-6
Google Scholar
[8]
M.H. Chantigny: Dissolved and water-extractable organic matter in soils: a review on the influence of land use and management practices. Geoderma Vol.113(2003), pp.357-380.
DOI: 10.1016/s0016-7061(02)00370-1
Google Scholar
[9]
M.V. Cheshire: Carbohydrates in relation to soil fertility. In: Vaughan, D., Malcolm, R.E. (Eds.), Soil Organic Matter and Biological Activity. Martinus Nijhoff, Amsterdam, 1985, pp.263-288
DOI: 10.1007/978-94-009-5105-1_8
Google Scholar
[10]
D.S. Powlson, D. Jenkinson: A comparison of the organic matter, biomass, adenosine triphosphate and mineralizable nitrogen contents of ploughed and direct-drilled soils. Journal of Agricultural Science Vol. 97 (1981), pp.713-721.
DOI: 10.1017/s0021859600037084
Google Scholar
[11]
B. Grisi, C. Grace, P.C. Brookes, A. Benedetti, M.T. Dell'abate: Temperature effects on organic matter and microbial biomass dynamics in temperate and tropical soils. Soil Biology and Biochemistry Vol.30 (1998), pp.1309-1315.
DOI: 10.1016/s0038-0717(98)00016-9
Google Scholar
[12]
J. Rinklebe, U. Langer: Microbial diversity in three floodplain soils at the Elbe River(Germany). Soil Biology and Biochemistry Vol.38 (2006), pp.2144-2151.
DOI: 10.1016/j.soilbio.2006.01.018
Google Scholar
[13]
A.T. Poret-Peterson, B. Ji, E. Engelhaupt, J. Gulledge: Soil microbial biomass along a hydrologic gradient in a subsiding coastal bottomland forest: Implications for future subsidence and sea-level rise. Soil Biology and Biochemistry Vol. 39 (2007), pp.641-645.
DOI: 10.1016/j.soilbio.2006.09.016
Google Scholar
[14]
O. Pelz, W.-R. Abraham, M. Saurer, R. Siegwolf, J. Zeyer: Microbial assimilation of plant-derived carbon in soil traced by isotope analysis. Biology and Fertility of Soils Vol.41 (2005), pp.153-162.
DOI: 10.1007/s00374-004-0826-3
Google Scholar