Soil Respiration and its Controlling Factors in Six Coastal Young Monoculture Plantations

Article Preview

Abstract:

Biotic and abiotic factors how to influence soil respiration in different young monoculture plantations are not clearly understood. Soil respiration and its controlling factors were studied in six monoculture plantations in the coastal area of Shanghai, China. Soil respiration was significant difference among six stands. Variations of soil respiration in six plots were not directly related to changes in soil water content, but significant relationship was observed between soil respiration and soil temperature. The variation of soil respiration was firmly correlated to the variation of leaf area index (LAI) or gap fraction (GF), soil respiration enhanced with the increase of GF (or decreasing LAI). The microclimate within forest and soil temperature also had positively correlation with soil respiration, but which mainly were affected by GF or LAI. There was no significant relationship between soil respiration and either root biomass or soil nutrients.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

3751-3756

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] D. Bonal, A. Bosc, S. Ponton, J.Y. Goret, B. Burban, P. Gross, J.M. Bonnefond, J. Elbers, B. Longdoz, D. Epron, J.M. Guehl, A. Granier: Globe Change Biol. Vol. 14 (2008), pp.1917-1933

DOI: 10.1111/j.1365-2486.2008.01610.x

Google Scholar

[2] Y. Kosugi, T. Mitani, M. Itoh, S. Noguchi, M. Tani, N. Matsuo, S. Takanashi, S. Ohkubo, A.R. Nik: Agr. Forest Meteorol. Vol. 147(2007), p.35–47

DOI: 10.1016/j.agrformet.2007.06.005

Google Scholar

[3] G. X. Han, and G. S. Zhou: Chinese J. Plant Ecol. Vol. 33(2009), pp.197-205 (in Chinese)

Google Scholar

[4] Bréchet & S. Ponton & J. Roy & V. Freycon & Marie-M. Coûteaux & D. Bonal & D. Epron: Plant and Soil Vol. 319(2009), pp.235-246

DOI: 10.1007/s11104-008-9866-z

Google Scholar

[5] S. Hättenschwiler, B. Aeschlimann, B. Bonal, M. M. Coûteaux, J. Roy: New Phytol. Vol. 179(2008), p.165–175

Google Scholar

[6] E. Ayres, H. Steltzer, S. Berg, M. D. Wallenstein, B. L. Simmons, et al. PLoS ONE Vol. 4(2009), p. e5964.

Google Scholar

[7] M. Jonard, F. Andre, F. Jonard, N. Mouton, P. Proces, Q. Ponette: Ann. Sci. For. Vol. 64(2007), pp.141-150

Google Scholar

[8] A. Katayama, T. Kumec, H. Komatsu, M. Ohashi, M. Nakagawa, M. Yamashita, K. Otsuki, M. Suzuki, T. Kumagai. Agr. Forest Meteorol. Vol. 149(2009), pp.1666-1673

DOI: 10.1016/j.agrformet.2009.05.007

Google Scholar

[9] W. R. Zhang, G. Y. Yang, X. N. Tu: Forest Soil Analysis Method. (Trans Tech Chinese Press of Stand Publications, Beijing 1999)

Google Scholar

[10] S. Bhupinderpal, A. Nordgren, M. O. Lofvenius, M. N. Hogberg, P. E. Mellander, P. Hogberg: Plant Cell Environ. Vol. 26(2003), pp.1287-1296

Google Scholar

[11] R. Wirth, B. Weber, R. J. Ryel: Acta Oecol. Vol. 22(2001), pp.235-244.

Google Scholar

[12] D. R. McCarthy, K. J. Brown: Forest Ecol. Manag. Vol. 237(2006), pp.94-102

Google Scholar

[13] A. T. C. Dias, J. van Ruijven and F. Berendse: Oecologia Vol. 163(2010), pp.805-813

Google Scholar

[14] M. Adachi, Y.S. Bekku, W. Rashidah, T. Okuda, H. Koizumi: Appl. Soil Ecol. Vol. 34(2006), pp.258-265

DOI: 10.1016/j.apsoil.2006.01.006

Google Scholar

[15] S. Hättenschwiler, A.V. Tiunov, S. Scheu: Rev. Ecol. Evol. Syst. Vol. 36(2005), pp.191-218

DOI: 10.1146/annurev.ecolsys.36.112904.151932

Google Scholar