Homogeneous Derivatization of Bagasse in Different Solvents

Article Preview

Abstract:

The homogeneous modification of bagasse was investigated without additional catalysts in three solvents with MA and SA as derivatizing reagents. The results indicated that derivatization of bagasse in [C4mim]Cl was achieved at relatively high temperature, while that in DMSO/LiCl and DMSO/NMI was successfully carried out at room temperature. Surprisingly, the higher WPG of bagasse yielded in DMSO/NMI and DMSO/LiCl than in [C4mim]Cl because NMI and LiCl acted as solvent, base, and catalyst. FT-IR and CP/MAS 13C-NMR analyses provided more evidences of derivatization.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

4504-4508

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] U.S. Orlando, A.U. Baes, W. Nishijima and M. Okada. Chemosphere (2002), 48: 1041-1046.

Google Scholar

[2] A. Pandey, C.R. Soccol, P. Nigam and V.T. Soccol. Bioresource Technology (2000), 74: 69-80.

DOI: 10.1016/s0960-8524(99)00142-x

Google Scholar

[3] Y. Ogaki, Y. Shinozuka, M. Hatakeyama, T. Hara, N. Ichikuni and S. Shimazu. Chemistry Letters (2009), 38: 1176-1177.

DOI: 10.1246/cl.2009.1176

Google Scholar

[4] Y.-H.P. Zhang, S.-Y. Ding, J.R. Mielenz, J.-B. Cui, R.T. Elander, M. Laser, M.E. Himmel, J.R. McMillan and L.R. Lynd. Biotechnology and Bioengineering (2007), 97: 214-223.

DOI: 10.1002/bit.21386

Google Scholar

[5] A.K. Mohanty, M. Misra and G. Hinrichsen. Macromolecular Materials and Engineering (2000), 276: 1-24.

Google Scholar

[6] M.J. Zhang, W. Qi, R. Liu, R.X. Su, S.M. Wu and Z.M. He. Biomass & Bioenergy (2010), 34: 525-532.

Google Scholar

[7] M. FitzPatrick, P. Champagne, M.F. Cunningham and R.A. Whitney. Bioresource Technology (2010), 101: 8915-8922.

Google Scholar

[8] O.A. El Seoud, G.A. Marson, G.T. Giacco and E. Frollini. Macromolecular Chemistry and Physics (2000), 201: 882-889.

Google Scholar

[9] T. Heinze, A. Koschella and A. Ebringerova. Chemical functionalization of xylan: A short review. in: Gatenholm P., Tenhanen M. (Eds.), Hemicelluloses: Science and Technology. Amer Chemical Soc, Washington, 2004, pp.312-325.

DOI: 10.1021/bk-2004-0864.ch020

Google Scholar

[10] J. Wu, J. Zhang, H. Zhang, J.S. He, Q. Ren and M. Guo. Biomacromolecules (2004), 5: 266-268.

Google Scholar

[11] W. Lan, C.F. Liu and R.C. Sun. Journal of Agricultural and Food Chemistry (2011), 59: 8691-8701.

Google Scholar

[12] S.L. Maunu. Progress in Nuclear Magnetic Resonance Spectroscopy (2002), 40: 151-174.

Google Scholar

[13] W.Y. Li, A.X. Jin, C.F. Liu, R.C. Sun, A.P. Zhang and J.F. Kennedy. Carbohydrate Polymers (2009), 78: 389-395.

Google Scholar

[14] C.F. Liu, A.P. Zhang, W.Y. Li, F.X. Yue and R.C. Sun. Journal of Agricultural and Food Chemistry (2009), 57: 1814-1820.

Google Scholar

[15] C.F. Liu, R.C. Sun, M.H. Qin, A.P. Zhang, J.L. Ren, J. Ye, W. Luo and Z.N. Cao. Bioresource Technology (2008), 99: 1465-1473.

Google Scholar