Nitrate Reduction Using Nanoscale Zero Valent Iron Supported by Porous Suspended Ceramsite

Article Preview

Abstract:

Porous suspended ceramsite (PSC) supported nanoscale zero valent iron (NZVI/PSC) were applied to the reductive removal of nitrate to investigate the effects. XRD, SEM and EDS analyses on NZVI/PSC revealed that PSC had loaded some nanoparticles, whose size was about 50 nm. Nitrate reduction rate of NZVI/PSC reached about 80% in 60 min, while the PSC unsupported nanozerovalent iron performed poorly with only 8% removal of the nitrate. Furthmore, during the reactions of NZVI/PSC and PSC with nitrate, for the NZVI/PSC, pH change was the greatest, while the reaction with PSC (this particles shows the lowest reactivity for nitrate reduction) resulted in the least pH change.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 726-731)

Pages:

677-682

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.T. Nolan, B.C. Ruddy, D.R. Helsel: Environ. Technol. 31 (1997), 2229-2236.

Google Scholar

[2] A. Pintar: Catalysis Today 77 (2003) 451–465.

Google Scholar

[3] D.C. Bouchard, M.K. Williams, R.Y. Surampalli, J. Am: Water Works Association 84 (1992), 85-90.

Google Scholar

[4] H. Constantin, M. Fick: Water Res. 31 (1997), 583-589.

Google Scholar

[5] M.P. Maia, M.A. Rodrigues, F.B. Passos: Catalysis Today 123 (2007), 171-176.

Google Scholar

[6] L.W. Canter: Nitrates in Groundwater, CRC Press, Boca Raton(1996).

Google Scholar

[7] L. Knobeloch, B. Salna, A. Hogan, J. Pstle, H. Anderson: Environmental Health Perspectives 108 (2000), 675-678.

DOI: 10.1289/ehp.00108675

Google Scholar

[8] D. Majumdar, N. Gupta: Indian J.Environ. Health 42 (2000), 28-39.

Google Scholar

[9] F. Cheng, R. Muftikian, Q. Fernando, N. Korte: Chemosphere 35 (1997), 2689-2695.

DOI: 10.1016/s0045-6535(97)00275-0

Google Scholar

[10] C.P. Huang, H.W. Wang, P.C. Chiu: Water Res. 32 (1998), 2257-2264.

Google Scholar

[11] J.M. Rodríguez-Maroto, F. García-Herruzo, A. García-Rubio, C. Gómez-Lahoz C. Vereda-Alonso: Chemosphere 74 (2009), 804-809.

DOI: 10.1016/j.chemosphere.2008.10.020

Google Scholar

[12] X. Fan, X. Guan, J. Ma, H. Ai: J. Environ. Sci. 21 (2009), 1028-1035.

Google Scholar

[13] J. Li, Y. Li, Q. Meng: J. Hazard. Mater. 174 (2010), 188-193.

Google Scholar

[14] S. Choe, Y.Y. Chang, K.Y. Hwang, J. Khim: Chemosphere 41 (2000), 1307-1311.

Google Scholar

[15] Y.H. Liou, S.L. Lo, C.J. Lin, W.H. Kuan, S.C. Weng: J. Hazard. Mater. B127 (2005), 102-110.

Google Scholar

[16] G.C.C. Yang, H.L. Lee: Water Res. 39 (2005), 884-894.

Google Scholar

[17] J. Zhang, Z. Hao, Z. Zhang, Y. Yang, X. Xu: Process Saf. Environ. 88 (2010), 439-445.

Google Scholar

[18] T. Phenrat, N. Saleh, K. Sirk, R.D. Tilton, G.V. Lowry: Environ. Sci. Technol. 41 (2007), 284-290.

DOI: 10.1021/es061349a

Google Scholar

[19] X. Wang, C. Chen, H. Liu, J. Ma: Water Res. 42 (2008), 4656-4664.

Google Scholar

[20] H. Zhang, Z. Jin, L. Han, C. Qin: Trans. Nonferrous Met. Soc. Chin. 16 (2006), 345-349.

Google Scholar

[21] P. Zhang, X. Tao, Z. Li, R.S. Bowman: Environ. Sci. Technol. 36 (2002), 3597-3603.

Google Scholar

[22] T. Zheng, J. Zhan, J. He, C. Day, Y. Lu, G.L. McPerson, G. Piringer, V.T. John: Environ. Sci. Technol. 42 (2008), 4494-4499.

DOI: 10.1021/es702214x

Google Scholar

[23] A. Li, C. Tai, Z. Zhao, Y. Wang, Q. Zhang, G. Jiang, J. Hu: Environ. Sci. Technol. 41 (2007), 6841-6846.

Google Scholar

[24] Y. Zhang, Y. Li, J. Li, L. Hu, X. Zheng: Chem. Eng. J. 171 (2011), 526-531.

Google Scholar

[25] M. Cho, S. Ahn: Korean J. Chem. Eng. 29(8) (2012), 1057-1062.

Google Scholar

[26] G. Xia, S. Xie, X. Zhao, R. Liao: J. Func. Mater. 10(43) (2012), 1295-1298. (in Chinese)

Google Scholar

[27] O. Brylev, M. Sarrazin, L. Roué, D. Bélanger: Electrochim. Acta. 52 (2007), 6237-6247.

DOI: 10.1016/j.electacta.2007.03.072

Google Scholar

[28] K. Sohn, S.W. Kang, S. Ahn, M. Woo, S.K. Yang: Environ. Sci. Technol. 40(2006), 5514-5519.

Google Scholar

[29] V. Idakiev, T. Tabakova, K. Tenchev, Z.Y. Yuan, T.Z. Ren, B.L. Su: Catal. Today 128(2007), 223-229.

Google Scholar

[30] C.P. Huang, H.W. Wang, P.C. Chiu: Water Res. 32(8)(1998), 2257-2264.

Google Scholar

[31] Y.H. Huang, T.C. Zhang: J. Environ. Eng. 128(7)(2002), 604-611.

Google Scholar

[32] M.J. Alowitz, M.M. Scherer: Environ. Sci. Technol. 36(3)(2002), 299-306.

Google Scholar

[33] Z. Jiang, L. Lv, W. Zhang, Q. Du, B. Pan, L. Yang, Q. Zhang: Water Res. 45 (2011), 2191-2198.

Google Scholar

[34] C.F. Chew, T.C. Zhang: Environ. Sci. Technol. 16(5)(1999), 389-401.

Google Scholar

[35] S. Choe, Y.Y. Chang, K.Y. Hwang, J. Khim: Chemosphere, 41(2000), 1307-1311.

Google Scholar

[36] M.J. Alowitz , M.M. Scherer: Environ. Sci. Technol. 36(3)(2002), 299-306.

Google Scholar

[37] R. Miehr, M.M. Tratnyek, J.Z. Bandstra, M.M. Scherer, M.J. Alowitz, E.J. Bylaska: Environ. Sci. Technol. 38(1)(2004), 139-147.

DOI: 10.1021/es034237h

Google Scholar

[38] K. Sohn, S.W. Kang, S. Ahn, M. Woo, S.K. Yang: Environ. Sci. Technol. 40(17)(2006), 5514-5519.

Google Scholar