Preparation and Characterization of the C2H5COOH-Graphite Intercalation Compound

Article Preview

Abstract:

The graphite intercalation compound with easy low temperature exfoliated and high exfoliated volume was prepared by chemical oxidation method using natural graphite flakes, C2H5COOH, FeCl3 and CrO3 as raw materials, according to the mass ratio of 1:2.8:0.3:0.2. The expansion volume of graSubscript textphite intercalation compounds was 320 mL•g-1 at 300°C and achieved biggest 580 mL•g-1 at 700°C. The composition, structure and properties of the graphite intercalation compound were characterized and analyzed by SEM, FTIR, XRD, TG, DSC, VSM techniques. Results showed that the intercalant of graphite sandwich were C2H5COO- and FeCl3.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

2181-2186

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.M. Viktor, D.G. Ekaterina, S.N. Albert, J.K. Sung and E.F. Vladimir. Carbon Vol. 49(2011), pp.3233-3241.

Google Scholar

[2] D. Chung. J. Mater Eng Perform Vol. 9(2000), pp.161-165.

Google Scholar

[3] G. Hristea, P. Budrugeac. J. Therm Anal Calorim Vol. 91(2008), p.817.

Google Scholar

[4] F. Vieira, I. Cisneros, N.G. Rosa, G.M. Trindade and N.D. Mohallem. Carbon Vol. 44(2006), p.2590.

Google Scholar

[5] G. Wang, Q. Sun, Y. Zhang, J. Fan and L. Ma. Desalination Vol.263(2010), p.183.

Google Scholar

[6] S. Li, S. Tian, Y. Feng, J. Lei, P. Wang and Y. Xiong. J. Hazard Mater Vol. 183(2010), p.506.

Google Scholar

[7] S. Li, S. Tian, C. Du, C. He, and C. Cen. Chem. Eng. J. Vol. 162(2010), p.546.

Google Scholar

[8] X. Yue, R. Zhang, H. Wang and F. Zhang. J. Phys. Chem. Solids Vol. 70(2009), p.1391.

Google Scholar

[9] J.H. Lee, D.W. Shin, V.G. Makotchenko and A.S. Nazarov. Small Vol. 6(2010), p.58–62.

Google Scholar

[10] I. Janowska, K. Chizari, O. Ersen and S. Zafeiratos. Nano. Res. Vol. 3(2010), p.126.

Google Scholar

[11] E.D. Grayfer, A.S. Nazarov, V.G. Makotchenko, S.J. Kim and V.E. Fedorov. J. Mater. Chem. Vol. 21(2011), p.3410.

Google Scholar

[12] N. Sorokina, I. Nikol'skaya, S.Ionov and V.Avdeev. Russ. Chem. B Vol. 54(2005), p.1749.

Google Scholar

[13] M.S. Zhou, C.J. Li and M. Xu. Chinese J. Inorg. Chem. Vol. 22(2006), pp.2049-2054(In Chinese).

Google Scholar

[14] M.S. Zhou, L.M. Liu and C.J. Li. New Carbon Mater. Vol. 25(2010), pp.389-394(In Chinese).

Google Scholar

[15] M.S. Zhou, C.J. Li and M. Xu. J. Inorg. Mater. Vol. 22(2007), pp.509-513(In Chinese).

Google Scholar

[16] H. Ren, F.Y. Kang and Q.J. Jiao. New Carbon Mater Vol. 21(2006), pp.24-27.

Google Scholar

[17] J.Y. Xiu,W. Juan, Z. Qi and W.C. Xiu. Materials Letters Vol. 73(2012), pp.11-14.

Google Scholar

[18] J.H. Li, H.Q. Shi, N. Li and M. Li. Ultrasonics Sonochemistry Vol. 17(2010), pp.745-748.

Google Scholar

[19] S. Rajatendu, B. Mithun, S. Bandyopadhyayb, K.B. Anil. Progress in Polymer Science Vol. 36(2011), pp.638-670.

Google Scholar

[20] O.N. Shornikova, N.E. Sorokina, N.V. Maksimova and V. V. Avdeev. Inorganic Materials Vol. 41(2005), pp.120-126.

Google Scholar