Photocatalytic Decomposition of Methylene Blue with Lanthanum Doping TiO2 under Visible Light Irradiation

Article Preview

Abstract:

Lanthanum doped TiO2 powders were prepared by hydrolysis of titanium tetra-n-butyl oxide and La (NO3)3 in solution. The resulting powders were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), UV-Vis absorption spectroscopy. The photocatalytic activities of doped samples were evaluated by the decomposition of methylene blue under visible light irradiation. The XRD results showed that the doping of lanthanum could not only efficiently inhibit the grain growth but also suppress the phase transition of anatase to rutile. UV-Vis spectroscopy of lanthanum doping TiO2 indicated that the absorption onset red-shifted to the visible light region. XPS results revealed that La2O3 had formed which could enhance the surface area. The degradation rates of methylene blue verified that the visible light photocatalytic activity of TiO2 has been enhanced by the doping of lanthanum.

You might also be interested in these eBooks

Info:

Periodical:

Advanced Materials Research (Volumes 734-737)

Pages:

2163-2167

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] T. Morikawa, T. Ohwaki, K. Suzuki, S. Moribe, S. Tero-Kubota, Appl. Catal., B Environ. 83 (2008) 56–62.

Google Scholar

[2] S.D. Sharma, K.K. Saini, C. Kant, C.P. Sharma, S.C. Jain, Appl. Catal., B Environ. 84 (2008) 233–240.

Google Scholar

[3] S.U.M. Khan, M. Al-Shahry, W.B.I. Jr, Science 297 (2002) 2243–2245.

Google Scholar

[4] H. Ozaki, N. Fujimoto, S. Iwamoto, M. Inoue, Appl. Catal., B Environ. 70 (2007) 431–436.

Google Scholar

[5] Q.H. Zhang, W.G. Fan, L. Gao, Appl. Catal., B Environ. 76 (2007) 168-173.

Google Scholar

[6] H. Einaga, M. Harada, S. Futamura, T. Ibusuki, J. Phys. Chem. B 107 (2003) 9290-9297.

Google Scholar

[7] M.K. Seery, R. George, P. Floris, S.C. Pillai, J. Photochem. Photobiol. A: Chem.189 (2007) 258–263.

Google Scholar

[8] S. In, A. Orlov, R. Berg, F. Garcia, S. Pedrosa-Jimenez, M.S. Tikhov, D.S. Wright, R.M. Lambert, J. Am. Chem. Soc. 129 (2007) 13790-13791.

DOI: 10.1021/ja0749237

Google Scholar

[9] M. Uzunova, M. Kostadinov, J. Georgieva, C. Dushkin, D.Todorovsky, N. Philippidis, I.Poulios, S. Sotiropoulos, Appl. Catal., B Environ. 73 (2007) 23–33.

DOI: 10.1016/j.apcatb.2006.12.004

Google Scholar

[10] Y.Q. Wang, H.M. Cheng, L. Zhang, Y.Z. Hao, J.M. Ma, B. Xu, W.H. Li, J. Molec. Catal. A: Chem.151 (2000) 205–216.

Google Scholar

[11] X.J. Quan, H.Q. Tan,�Q.H. Zhao, X.M. Sang, J. Mater. Sci. 42 (2007) 6287–6296.

Google Scholar

[12] M. Jin, Y. Nagaoka, K. Nishi, K. Ogawa, S. Nagahata, T. Horikawa, M. Katoh, T.Tomida, J. Hayashi, Adsorption 14 (2008) 257–263.

DOI: 10.1007/s10450-007-9095-4

Google Scholar

[13] L.Q. Jing, X.J. Sun, B.F. Xin, B.Q. Wang, W.M. Cai, H.G. Fu, J. Solid State Chem. 177 (2004) 3375–3382.

Google Scholar