[1]
K. P. Fong, C. Barry, A. N. Tran, E. A. Traxler, K. M. Wannemacher, H. Y. Tang, K. D. Speicher, I. A. Blair, D. W. Speicher, T. Grosser, and L. F. Brass, Deciphering the human platelet sheddome, Blood, vol. 117, pp. e15-26, Jan 6 (2011).
DOI: 10.1182/blood-2010-05-283838
Google Scholar
[2]
P. Saftig and K. Reiss, The "A Disintegrin And Metalloproteases" ADAM10 and ADAM17: novel drug targets with therapeutic potential?, European journal of cell biology, vol. 90, pp.527-35, Jun-Jul (2011).
DOI: 10.1016/j.ejcb.2010.11.005
Google Scholar
[3]
M. Gooz, ADAM-17: the enzyme that does it all, Crit Rev Biochem Mol Biol, vol. 45, pp.146-69, Apr (2010).
Google Scholar
[4]
P. E. Gonzales, A. Solomon, A. B. Miller, M. A. Leesnitzer, I. Sagi, and M. E. Milla, Inhibition of the tumor necrosis factor-alpha-converting enzyme by its pro domain, J Biol Chem, vol. 279, pp.31638-45, Jul 23 (2004).
DOI: 10.1074/jbc.m401311200
Google Scholar
[5]
J. Scheller, A. Chalaris, C. Garbers, and S. Rose-John, ADAM17: a molecular switch to control inflammation and tissue regeneration, Trends in immunology, vol. 32, pp.380-7, Aug (2011).
DOI: 10.1016/j.it.2011.05.005
Google Scholar
[6]
M. S. Bahia and O. Silakari, Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders, Chem Biol Drug Des, vol. 75, pp.415-43, May (2010).
DOI: 10.1111/j.1747-0285.2010.00950.x
Google Scholar
[7]
P. R. Murumkar, S. DasGupta, S. R. Chandani, R. Giridhar, and M. R. Yadav, Novel TACE inhibitors in drug discovery: a review of patented compounds, Expert Opin Ther Pat, vol. 20, pp.31-57, Jan (2010).
DOI: 10.1517/13543770903465157
Google Scholar
[8]
S. DasGupta, P. R. Murumkar, R. Giridhar, and M. R. Yadav, Current perspective of TACE inhibitors: a review, Bioorg Med Chem, vol. 17, pp.444-59, Jan 15 (2009).
DOI: 10.1016/j.bmc.2008.11.067
Google Scholar
[9]
A. Chalaris, N. Adam, C. Sina, P. Rosenstiel, J. Lehmann-Koch, P. Schirmacher, D. Hartmann, J. Cichy, O. Gavrilova, S. Schreiber, T. Jostock, V. Matthews, R. Hasler, C. Becker, M. F. Neurath, K. Reiss, P. Saftig, J. Scheller, and S. Rose-John, Critical role of the disintegrin metalloprotease ADAM17 for intestinal inflammation and regeneration in mice, The Journal of experimental medicine, vol. 207, pp.1617-24, Aug 2 (2010).
DOI: 10.1084/jem.20092366
Google Scholar
[10]
K. Brandl, L. Sun, C. Neppl, O. M. Siggs, S. M. Le Gall, W. Tomisato, X. Li, X. Du, D. N. Maennel, C. P. Blobel, and B. Beutler, MyD88 signaling in nonhematopoietic cells protects mice against induced colitis by regulating specific EGF receptor ligands, Proc Natl Acad Sci U S A, vol. 107, pp.19967-72, Nov 16 (2010).
DOI: 10.1073/pnas.1014669107
Google Scholar
[11]
K. Maskos, C. Fernandez-Catalan, R. Huber, G. P. Bourenkov, H. Bartunik, G. A. Ellestad, P. Reddy, M. F. Wolfson, C. T. Rauch, B. J. Castner, R. Davis, H. R. Clarke, M. Petersen, J. N. Fitzner, D. P. Cerretti, C. J. March, R. J. Paxton, R. A. Black, and W. Bode, Crystal structure of the catalytic domain of human tumor necrosis factor-alpha-converting enzyme, Proc Natl Acad Sci U S A, vol. 95, pp.3408-12, Mar 31 (1998).
DOI: 10.1073/pnas.95.7.3408
Google Scholar
[12]
B. Raveh, N. London, L. Zimmerman, and O. Schueler-Furman, Rosetta FlexPepDock ab-initio: simultaneous folding, docking and refinement of peptides onto their receptors, PLoS One, vol. 6, p. e18934, (2011).
DOI: 10.1371/journal.pone.0018934
Google Scholar
[13]
C. A. Smith and T. Kortemme, Backrub-like backbone simulation recapitulates natural protein conformational variability and improves mutant side-chain prediction, Journal of molecular biology, vol. 380, pp.742-56, Jul 18 (2008).
DOI: 10.1016/j.jmb.2008.05.023
Google Scholar
[14]
C. A. Smith and T. Kortemme, Structure-based prediction of the peptide sequence space recognized by natural and synthetic PDZ domains, Journal of molecular biology, vol. 402, pp.460-74, Sep 17 (2010).
DOI: 10.1016/j.jmb.2010.07.032
Google Scholar
[15]
G. Kapp, S. Liu, D. Wong, A. Reményi, B. Yeh, J. Fraser, J. Taunton, W. Lim, and T. Kortemme, Control of protein signaling using a computationally designed GTPase/GEF orthogonal pair, Proc Natl Acad Sci U S A, submitted for publication.
DOI: 10.1073/pnas.1114487109
Google Scholar
[16]
C. I. Caescu, G. R. Jeschke, and B. E. Turk, Active-site determinants of substrate recognition by the metalloproteinases TACE and ADAM10, Biochem J, vol. 424, pp.79-88, Nov 15 (2009).
DOI: 10.1042/bj20090549
Google Scholar
[17]
M. H. Lambert, R. K. Blackburn, T. D. Seaton, D. B. Kassel, D. S. Kinder, M. A. Leesnitzer, D. M. Bickett, J. R. Warner, M. W. Andersen, J. G. Badiang, D. J. Cowan, M. D. Gaul, K. G. Petrov, M. H. Rabinowitz, R. W. Wiethe, J. D. Becherer, D. L. McDougald, D. L. Musso, R. C. Andrews, and M. L. Moss, Substrate specificity and novel selective inhibitors of TNF-alpha converting enzyme (TACE) from two-dimensional substrate mapping, Comb Chem High Throughput Screen, vol. 8, pp.327-39, Jun (2005).
DOI: 10.2174/1386207054020840
Google Scholar