Morphologies and Photoluminescence of Bi-Doped ZnO Materials Synthesized by Sonochemical Method

Article Preview

Abstract:

The current paper reported the sonichemical synthesis and optical properties of the Bi-doped ZnO with superstructural nanomaterials. The morphology of the powders revealed by SEM and TEM exhibited stelliform dendrite and the sonication time appeared to be a critical parameter for the shape determination. The optical properties of the products were investigated by measuring the photoluminescence spectra at room temperature and the results demonstrated that the synthesized material has good optical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

535-539

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Wang, Z. L.; Song, J. H. Science 2006, 312, 242-246.

Google Scholar

[2] Lucas, M.; Mai, W.; Yang, R.; Wang, Z. L.; Riedo, E. Nano lett. 2007, 7, 1314.

Google Scholar

[3] Pan, Z. W.; Wang, Z. L. Science 2001, 291, (1947).

Google Scholar

[4] Huang, M. H.; Wu, Y.; Feick, H.; Tran, N.; Weber, E.; Yang, P. D. Adv. Mater. 2001, 13, 113.

Google Scholar

[5] Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. E. Chem. Mater. 2001, 13, 4395.

Google Scholar

[6] Ohshima, E.; Ogino, H.; Niikura, I.; Maeda, K.; Sato, M.; Ito, M.; Fukuda, T. J. Cryst. Growth. 2004, 260, 166.

Google Scholar

[7] Olsson, E.; Dunlop, G. L.; Osterland, R. J. Am. Ceram. Soc. 1993, 76(1): 65– 71.

Google Scholar

[8] Zhang, C.; Hu, Y.; Lu, W.; Cao, M.; Zhou, D. J. Eur. Ceram. Soc. 2002, 22: 61 – 65.

Google Scholar

[9] Clarke, D. R. Varistor ceramics. J. Am. Ceram. Soc. 1999, 82(3): 485–502.

Google Scholar

[10] Elfwing, M.; Osterlund, R.; Olsson, E. J. Am. Ceram. Soc. 2000, 83(9): 2311 – 4.

Google Scholar

[11] Madler, L. Pratsinis SE. J. Am. Ceram. Soc. 2002, 85(7): 1713– 8.

Google Scholar

[12] Choi, J. H.; Hwang, N. M.; Kim, D. Y. J. Am. Ceram. Soc. 2001, 84(6): 1398– 400.

Google Scholar

[13] Gulino, A.; Fragala, I. Chem. Mater, 2002, 14, 116-121 (14] Dey, D.; Bradt, R. C. J. Am. Ceram. Soc. 1992, 75(9): 2529– 34.

Google Scholar

[15] Huang, M. H.; Mao, S.; Feick, H.; Yan, H. Q.; Wu, Y. Y.; Kind, H.; Weber, E.; Russo, R.; Yang, P. D. Science 2001, 292, 1897.

DOI: 10.1126/science.1060367

Google Scholar

[16] Pan, Z. W.; Dai, Z. R.; Wang, Z. L. Science 2001, 291, (1947).

Google Scholar

[17] Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Phys. Rev. Lett. 2003, 91, 185502.

Google Scholar

[18] Kong, X. Y.; Wang, Z. L. Nano Lett. 2003, 3, 1265.

Google Scholar

[19] Gao, P. X.; Wang, Z. L. J. Am. Chem. Soc. 2003, 125, 11299.

Google Scholar

[20] Lao, J. Y.; Wen, J. G.; Ren, Z. F. Nano Lett. 2002, 2, 1287.

Google Scholar

[21] Lao, J. Y.; Huang, J. Y.; Wang, D. Z.; Ren, Z. F. Nano Lett. 2003, 3, 235.

Google Scholar

[22] Wu, J. J.; Liu, S. C.; Wu, C. T.; Chen, K. H.; Chen, L. C. Appl. Phys. Lett. 2002, 81, 1312.

Google Scholar

[23] Tian, Z. R.; Voigt, J. A.; Liu, J.; Mckenzie, B.; Mcdermott, M. J. J. Am. Chem. Soc. 2002, 124, 12954.

Google Scholar

[24] Tian, Z. R.; Voigt, J. A.; Liu, J.; McKenzie, B.; McDermott, M. J.; Rodriguez, M. A.; Konishi, H. Xu, H. F. Nat. Mater. 2003, 2, 821.

Google Scholar

[25] Taubert, A.; Kubel, C.; Martin, D. C. J. Phys. Chem. B 2003, 107, 2660.

Google Scholar

[26] Zhang, H.; Yang, D.; Ji, Y.; Ma, X.; Xu, J.; Que, D. J. Phys. Chem. B 2004, 108, 3955.

Google Scholar

[27] Gao, X. P.; Zheng, Z. F.; Zhu, H. Y.; Pan, G. L.; Bao, J. L.; Wu, F.; Song, D. Y. Chem. Comm. 2004, 12, 1428.

Google Scholar

[28] Liu, B.; Yu, S. H.; Zhang, F.; Li, L. J.; Zhang, Q.; Ren, L.; Jiang, K. J. Phys. Chem. B 2004, 108, 4338.

Google Scholar

[29] Li, F.; Ding, Y.; Gao, P. X.; Xin, X. Q.; Wang, Z. L. Angew. Chem., Int. Ed. 2004, 43, 5238.

Google Scholar

[30] Liu, B.; Zeng, H. C. J. Am. Chem. Soc. 2004, 126, 16744.

Google Scholar

[31] Jiang, C. L.; Zhang, W. Q.; Zou, G. F.; Yu, W. C.; Qian, Y. T. J. Phys. Chem. 2005, 109, 1361.

Google Scholar

[32] Lopez, C. M.; Choi, K. S. Langmuir 2006. 22, 10625.

Google Scholar

[33] Li, W. J.; Zhong, W. Z.; Zheng, Y. Q.; Yin, Z.W. J. Synthetic Cryst. 1999, 28, 54.

Google Scholar

[34] Zhong, W. Z.; Zhang, Y. Q.; Ding, Z. L.; Shi, E. W.; Hua, S. K. J. Synthetic Cryst. 2003, 32, 91.

Google Scholar

[35] Yan, Y.; Wu, Q. S; Li, L.; Ding, Y. P. Crystal. Growth. & Design. 2006, 6[3): 769-773.

Google Scholar

[36] Chen, X.; Wang, X.; Wang, Z.; Yang, X.; Qian, Y. Cryst. Growth. Des. 2005, 5, 347.

Google Scholar

[37] Li, Y.K.; Li, G.R.; Yin, Q. R. Mater. Sci. Eng. B. 2006, 130, 264.

Google Scholar

[38] Wang, X.D.; Song, J. H.; Liu, J. ; Wang, Z. L. Science, 2007, 316, 102-105.

Google Scholar

[39] Wang, X. D.; Summers, C. J.; Wang, Z. L. Nano Lett.; (Letter); 2004; 4(3]; 423-426.

Google Scholar

[40] Yu, H.; Zhang, Z.; Han, M.; Hao, X.; Zhu, F. J. Am. Chem. Soc. 2005; 127(8); 2378-2379.

Google Scholar

[41] Kumar, R.V.; Diamant, Y.; Gedanken, A. Chem . Mater. 2000. 12 , 2305.

Google Scholar