Behavior of High-Strength Concrete-Filled FRP Tube Columns under Simulated Seismic Loading: An Experimental Study

Article Preview

Abstract:

This paper reports on part of an ongoing experimental program at The University of Adelaide on the seismic behavior of high-strength concrete (HSC)-filled fiber reinforced polymer (FRP) tubes (HSCFFTs). The results from three square concrete-filled FRP tube (CFFT) columns that were tested under combined constant axial compression and reversed-cyclic lateral loading are presented. The main parameters of the experimental study included the axial load level, concrete strength, and FRP tube corner radius. The results indicate that square HSCFFT columns are capable of developing very high inelastic deformation capacities under simulated seismic loading. The results also indicate that increasing the corner radius beyond a certain threshold value provides no increase in column lateral drift capacities. It was observed that column deformability decreased with an increase in axial load level (P/Po) and concrete compressive strength (fc). The results of the experimental program are presented together with a discussion on the influence of the main parameters on the seismic behavior of CFFT columns.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

39-44

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Rochette, P., and Labossiere, P. (2000). Axial testing of rectangular column models confined with composites., Journal of Composites for Construction, ASCE, 4(3), 129-136.

DOI: 10.1061/(asce)1090-0268(2000)4:3(129)

Google Scholar

[2] Lam, L., and Teng, J. G. (2004). Ultimate condition of fiber reinforced polymer-confined concrete., Journal of Composites for Construction, ASCE, 8(6), 539-548.

DOI: 10.1061/(asce)1090-0268(2004)8:6(539)

Google Scholar

[3] Cui, C., and Sheikh, S. A. (2010). Experimental study of normal- and high-strength concrete confined with fiber-reinforced polymers., Journal of Composites for Construction, ASCE, 14(5), 553-561.

DOI: 10.1061/(asce)cc.1943-5614.0000116

Google Scholar

[4] Ozbakkaloglu, T., and Akin, E. (2012). Behavior of FRP-confined normal- and high-strength concrete under cyclic axial compression., Journal of Composites for Construction, ASCE, 16(4), 451-463.

DOI: 10.1061/(asce)cc.1943-5614.0000273

Google Scholar

[5] Ozbakkaloglu, T., Lim, J. C., and Vincent, T. (2013). FRP-Confined Concrete in Circular Sections: Review and Assessment of Stress-Strain Models., Engineering Structures, 49: 1068 - 1088.

DOI: 10.1016/j.engstruct.2012.06.010

Google Scholar

[6] Saadatmanesh, H., Ehsani, M. R., and Jin, L. (1996). Seismic strengthening of circular bridge pier models with fiber composites., ACI Structural Journal, 93(6), 639-647.

DOI: 10.14359/510

Google Scholar

[7] Sheikh, S. A. and Yau, G. (2002). Seismic behavior of concrete columns confined with steel and fiber –reinforced polymer., ACI Structural Journal, 99(1), 72-80.

DOI: 10.14359/11037

Google Scholar

[8] Wu, Y. F., Liu, T., and Wang, L. (2008).

Google Scholar

[9] Mirmiran, A., Shahawy, M., Samaan, m., El Echary, H., Mastrapa, J.C., and Pico, O. (1998). Effect of column parameters on FRP-confined concrete., Journal of composites for construction, ASCE, 2(4), 175-185.

DOI: 10.1061/(asce)1090-0268(1998)2:4(175)

Google Scholar

[10] Fam, A. Z. and Rizkalla, S. H. (2001). Confinement model for axially loaded concrete confined by circular fiber-reinforced polymer tubes., ACI Structural Journal, 98(4), 451-461.

DOI: 10.14359/10288

Google Scholar

[11] Ozbakkaloglu, T., and Oehlers, D. J. (2008). Concrete-filled Square and Rectangular FRP Tubes under Axial Compression., Journal of Composites for Construction, ASCE, 12 (4), 469-477.

DOI: 10.1061/(asce)1090-0268(2008)12:4(469)

Google Scholar

[12] Ozbakkaloglu, T. and Oehlers, D. J. (2008). Manufacture and testing of a novel FRP tube confinement system., Engineering Structures, 30 (9), 2448-2459.

DOI: 10.1016/j.engstruct.2008.01.014

Google Scholar

[13] Ozbakkaloglu, T. (2013). Axial compressive behavior of square and rectangular high- strength concrete-filled FRP tubes., Journal of Composites for Construction, ASCE, 17(1): 151 – 161.

DOI: 10.1061/(asce)cc.1943-5614.0000321

Google Scholar

[14] Ozbakkaloglu, T. (2013). Compressive behavior of concrete-filled FRP tube columns: Assessment of critical column parameters., Engineering Structures, 51: 188-199.

DOI: 10.1016/j.engstruct.2013.01.017

Google Scholar

[15] Ozbakkaloglu, T. (2013). Concrete-filled FRP Tubes: Manufacture and Testing of New Forms Designed for Improved Performance., Journal of Composites for Construction, ASCE, 17(2): 280 – 291.

DOI: 10.1061/(asce)cc.1943-5614.0000334

Google Scholar

[16] Seible, F., Burgueno, R., Abdallah, M. G., and Nuismer, R. (1996).

Google Scholar

[17] Yamakawa, T., Zhong, p., and Ohama, A. (2003). Seismic performance of aramid fiber square tubed concrete columns with metallic and/or non metallic reinforcement., Journal of Reinforced Plastic and Composites, 22(13), 1221-1237.

DOI: 10.1177/0731684403035432

Google Scholar

[18] Zhu, Z., Ahmad, I., and Mirmiran, A. (2006). Seismic performance of concrete-filled FRP tube columns for bridge substructure., Journal of Bridge Engineering, ASCE, 11(3), 359-370.

DOI: 10.1061/(asce)1084-0702(2006)11:3(359)

Google Scholar

[19] Ozbakkaloglu, T., and Saatcioglu, M. (2006). Seismic behavior of high-strength concrete Columns confined by fiber reinforced polymer tubes., Journal of Composites for Construction, ASCE, 10(6), 538-549.

DOI: 10.1061/(asce)1090-0268(2006)10:6(538)

Google Scholar

[20] Ozbakkaloglu, T., and Saatcioglu, M. (2007). Seismic performance of square high-strength concrete columns in FRP stay-in-place formwork., Journal of Structural Engineering, ASCE, 133(1), 44-56.

DOI: 10.1061/(asce)0733-9445(2007)133:1(44)

Google Scholar

[21] Saatcioglu, M., Ozbakkaloglu, T., and Elnabelsy, G. (2009). Seismic Behavior and Design of Reinforced Concrete Columns Confined with FRP Stay-in-place Formwork., ACI Special Publication SP-257, pp.149-170.

DOI: 10.14359/20245

Google Scholar