An Ellipse Fitting Algorithm Applied to the Construction of the Elliptic Arc-Shaped Leading Edge

Article Preview

Abstract:

In this paper, we proposed a new ellipse fitting method converting the ellipse fitting into a circle fitting based on projection transformation. Numerical experiments demonstrate that our approach have good stability and strong robustness against noise in addition to excellent precision and accuracy. In our further research, we successfully extend our algorithm to the construction of the elliptic arc-shaped leading edge by using a tangential contact constraint. Keywords: Ellipse fitting; Projection; PSO; Leading edge

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-238

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.T. Lebele-Alawa, H. Hart, S.O.T. Ogaji and S.D. Probert. Rotor-blades' profile influence on a gas-turbine's compressor effectiveness. Applied Energy, 2008, vol. 85, issue 6, pages 494-505.

DOI: 10.1016/j.apenergy.2007.12.001

Google Scholar

[2] I.A. Hamakhan, T. Korakianitis. Aerodynamic performance effects of leading-edge geometry in gas-turbine blades. Applied Energy, 2010, vol. 87, issue 5, pages 1591–1601.

DOI: 10.1016/j.apenergy.2009.09.017

Google Scholar

[3] Walraevens R E, Cumpsty N A. leading edge separation bubble on turbormachine blades. Journal of turbomachinery, 1995 vol. 117,  pages 115-125.

DOI: 10.1115/1.2835626

Google Scholar

[4] JIN Jun, LIU Bo, NAN Xiang-yi, CHEN Yun-yong. Influence effect of supersonic airfoil's leading edge geometric shape on aero-dynamical performance of cascade. Journal of AerospacePower, 2007, vol. 22, no. 4, pages 660-665.

Google Scholar

[5] Chu, Lei-Zhe; Du, Jian-Yi. Effect of the blade leading edge on the performance of a centrifugal compressor. Journal of engineering thermophysics, 2008, vol. 29, no. 5, pages 767-769.

Google Scholar

[6] Andrew W. Fitzgibbon, Maurizio Pilu, and Robert B. Fisher. Direct Least Squares Fitting of Ellipses. Pattern Analysis and Machine Intelligence, 1999, vol. 21, issue 5 , pages 476 – 480.

DOI: 10.1109/34.765658

Google Scholar

[7] Radim Halir, Jan Flusser. Numerically stable direct least squares fitting of ellipses. The Sixth International Conference in Central Europe on Computer Graphics and Visualization, 1998, vol. 1, pages 125~132.

Google Scholar

[8] F. Bookstein. Fitting conic sections to scattered data. Computer Graphics and Image Processing, 1979, vol. 9, issue 1, pages 56–71.

DOI: 10.1016/0146-664x(79)90082-0

Google Scholar

[9] Gander, W., Golub, G. H. and Strebel R. Least-square fitting of circles and ellipses. BIT, 1994, vol. 43, pages 558–578.

DOI: 10.1007/bf01934268

Google Scholar

[10] Anandaroop Ray, Deepak C. Srivastava. Non-linear least squares ellipse fitting using the genetic algorithm with applications to strain analysis. Journal of Structural Geology, Dec. 2008, vol. 30, issue 12, pages 1593–1602.

DOI: 10.1016/j.jsg.2008.09.003

Google Scholar

[11] D K Prasad, M K H Leung, C Quek. An unconstrained, non-iterative, least squares based geometric Ellipse Fitting method. Pattern Recognition, 2012, vol. 46, pages 1449-1465.

DOI: 10.1016/j.patcog.2012.11.007

Google Scholar

[12] Dale Umbach, Kerry N. Jones. A Few Methods for Fitting Circles to Data. IEEE Trans. Instrum. Meas., 2003, vol. 52, pages 1881–1885.

DOI: 10.1109/tim.2003.820472

Google Scholar

[13] Maurice Clerc, James Kennedy. The Particle Swarm—Explosion, Stability, and Convergence in a Multidimensional Complex Space. Evolutionary Computation, 2002, vol.  6  , issue 1, pages 58 - 73.

DOI: 10.1109/4235.985692

Google Scholar

[14] James Kennedy, Russell C. Eberhart. Particle swarm optimization. Neural Networks, 1995, vol.  4 pages 1942 - 1948.

Google Scholar