Effect of Photocatalytic Coating on Concentrator Photovoltaic Module

Article Preview

Abstract:

The anti-soiling layer was coated on the surface of Fresnel lens for concentrator photovoltaic. The anti-soiling layer was prepared by coating the acrylic urethane capping layer, the inorganic/organic nanograded intermediate layer, and the photocatalytic surface layer including modified WO3 and partial hydrolyzed tetraethyl orthosilicate. The adherent sand for the sample without coating was 0.023 g and that for the sample with coating was 0.008 g. The adhesion of sand was suppressed owing to the effect of the anti-soiling coating. The electrostatic potential for the sample without coating was 0.23 kV, and the value was much higher than that for the sample with coating. The electrostatic charge at the surface of sample was suppressed with the anti-soiling coating.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

337-340

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Yamaguchi, III–V compound multi-junction solar cells: present and future, Sol. Energy Mater. Sol. Cells 75 (2003) 261-269.

DOI: 10.1016/s0927-0248(02)00168-x

Google Scholar

[2] M. Yamaguchi, T. Takamoto, K. Araki, Super high-efficiency multi-junction and concentrator solar cells, Sol. Energy Mater. Sol. Cells 90 (2006) 3068-3077.

DOI: 10.1016/j.solmat.2006.06.028

Google Scholar

[3] T. Takamoto, M. Kaneiwa, M. Imaizumi, M. Yamaguchi, InGaP/GaAs-based Multijunction Solar Cells Prog. Photovoltaic 13 (2005) 495-511.

DOI: 10.1002/pip.642

Google Scholar

[4] J. Jaus, A. W. Bett, H. Reinecke, E. R. Weber, Reflective secondary optical elements for Fresnel lens based concentrator modules, Prog. Photovoltaics 19 (2011) 580-590.

DOI: 10.1002/pip.1065

Google Scholar

[5] K. Nishioka, T. Takamoto, T. Agui, M. Kaneiwa, Y. Uraoka, T. Fuyuki, Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell's characteristics and field-test meteorological data, Sol. Energy Mater. Sol. Cells 90 (2006).

DOI: 10.1016/j.solmat.2005.01.011

Google Scholar

[6] K. Araki, M. Kondo, H. Uozumi, N. J. Ekins-Daukes, T. Egami, M. Hiramatsu, Y. Miyazaki, M. Yamaguchi, Packaging III–V tandem solar cells for practical terrestrial applications achievable to 27% of module efficiency by conventional machine assemble technology, Sol. Energy Mater. Sol. Cells 90 (2006).

DOI: 10.1016/j.solmat.2005.09.014

Google Scholar

[7] K. Araki, T. Yano, Y. Kuroda, 30 kW Concentrator Photovoltaic System Using Dome-shaped Fresnel Lenses, Opt. Express 18 (2010) A53.

DOI: 10.1364/oe.18.000a53

Google Scholar

[8] M. Mani, R. Pillai, Impact of dust on solar photovoltaic (PV) performance: Research status, Renewable and Sustainable Energy Reviews 14 (2010) 3124–3131.

DOI: 10.1016/j.rser.2010.07.065

Google Scholar

[9] M. Garcia, L. Marroye, E. Lorenzo, M. Perez, Soiling and other optical losses in solar-tracking PV plants in navarra, Prog. Photovolt: Res. Appl. 19 (2011) 211-217.

DOI: 10.1002/pip.1004

Google Scholar

[10] H. K. Elminir, A. E. Ghitas, R. H. Hamid, F. El-Hussainy, M. M. Beheary, and K. M. Abdel-Moneim, Effect of dust on the transparent cover of solar collectors, Energy Convers. Manage. 47 (2006) 3192-3203.

DOI: 10.1016/j.enconman.2006.02.014

Google Scholar

[11] R. Hammond, D. Srinivasan, A. Harris, K. Whitfield, and J. Wohlgemuth, Effects of soiling on PV module and radiometer performance Proc. 26th IEEE photovoltaic Specialists Conf. (1997) 1121-1124.

DOI: 10.1109/pvsc.1997.654285

Google Scholar

[12] M. Vivar, R. Herrero, I. Ant6n, F. Martinez-Moreno, R. Moret6n, G. Sala, A. W. Blakers, J. Smeltink, Effect of soiling in CPV systems, Sol. Energy 84 (2010) 1327-1335.

DOI: 10.1016/j.solener.2010.03.031

Google Scholar