[1]
Lotka A J, Elements of Physical Biology. Baltimore: Williams and Wilkins Co., (1925).
Google Scholar
[2]
Volterra V, Variations and fluctuations of the number of individuals in animal species living together. R. N. Chapman: Animal Ecol., 1931; 409-448.
Google Scholar
[3]
Johnson JA, Banach spaces of Lipschitz functions and vector-valued, Lipschitz functions Trans. Amer. Math. Soc. 1970; 148: 147-169.
DOI: 10.1090/s0002-9947-1970-0415289-8
Google Scholar
[4]
Yamada Y, Multiple coexistence states for a prey-predator system with cross diffusion , J. Differential Equations 2004; 197: 315-348.
DOI: 10.1016/j.jde.2003.08.003
Google Scholar
[5]
Chen XF, Qi YW, Wang MX, A strongly coupled predator-prey system with non-monotonic functional response, Nonlinear Analysis 2007; 67: 1966-(1979).
DOI: 10.1016/j.na.2006.08.022
Google Scholar
[6]
Kadota T, Kuto K, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Aanl. Appl. vol. 323, 2006, pp.1387-1401.
DOI: 10.1016/j.jmaa.2005.11.065
Google Scholar
[7]
N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. Vol. 79, 1979, pp.83-99.
DOI: 10.1016/0022-5193(79)90258-3
Google Scholar
[8]
Choi YS, Lui R, Yamada Y, Existence of global solutions for the Shigesada Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst. 2004; 10: 719-730.
DOI: 10.3934/dcds.2004.10.719
Google Scholar
[9]
Dung L, Cross diffusion systems on n spatial dimension domains, Indiana Univ. Math. J. 2002; 51: 625-643.
Google Scholar
[10]
Dung L, Nguyen LV, . Nguyen TT, Shigesada-Kawasaki-Teramoto mode on higher dimensional domains, Electron. J. Differential Equations 2003; 72: 1-12.
Google Scholar
[11]
Lou Y, Ni WM, Wu Y, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst. 1998; 4: 193-203.
Google Scholar
[12]
Yagi A, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear. Anal. 1993; 21: 531-556.
Google Scholar
[13]
Kan-on Y, Stability of singularly perturbed solutions to nonlinear diffusion systems arisin in population dynamics, Hiroshima Math. J. 1993; 23: 509-536.
DOI: 10.32917/hmj/1206392779
Google Scholar
[14]
Kuto K., Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 2004; 197: 293-314.
DOI: 10.1016/j.jde.2003.10.016
Google Scholar
[15]
Wu Y., The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations 2005; 213: l289-340.
DOI: 10.1016/j.jde.2004.08.015
Google Scholar
[16]
Dancer EN, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl. 1983,; 91: 131-151.
DOI: 10.1016/0022-247x(83)90098-7
Google Scholar
[17]
Dancer E N, On positive solutions of some pairs of differential equations, II, J. Differential Equations 1985; 60: 236-258.
DOI: 10.1016/0022-0396(85)90115-9
Google Scholar
[18]
Dancer EN, On uniqueness and stability for solutions of singularly perturbated predator-prey type equations with diffusion, J. Differential Equations, 1993; 102: 1-32.
DOI: 10.1006/jdeq.1993.1019
Google Scholar
[19]
Lin CS, Ni WM., I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential equations, 1988; 72:. 1-27.
DOI: 10.1016/0022-0396(88)90147-7
Google Scholar
[20]
Lou Y, Ni WM., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 1996; 131: 79-131.
DOI: 10.1006/jdeq.1996.0157
Google Scholar
[21]
Pang PYH., Wang MX, Strategy and sationary pattern in a three-species predator-prey model, J. Differential Equations 2004; 200: 245-273.
DOI: 10.1016/j.jde.2004.01.004
Google Scholar
[22]
Feng XZ, Equilibrium and long-term behavior of two kinds of biology model, Shaanxi normal universit y, Xi'an, (2010).
Google Scholar