Positive Solutions of a Strongly Coupled Prey-Predator System

Article Preview

Abstract:

In this paper, the positive steady-state solutions of a strongly coupled partial differential equation system with Holling II functional response is studied. The existence for positive steady-state solutions of system is established by calculating the fixed point index in cone.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

432-436

Citation:

Online since:

August 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2013 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Lotka A J, Elements of Physical Biology. Baltimore: Williams and Wilkins Co., (1925).

Google Scholar

[2] Volterra V, Variations and fluctuations of the number of individuals in animal species living together. R. N. Chapman: Animal Ecol., 1931; 409-448.

Google Scholar

[3] Johnson JA, Banach spaces of Lipschitz functions and vector-valued, Lipschitz functions Trans. Amer. Math. Soc. 1970; 148: 147-169.

DOI: 10.1090/s0002-9947-1970-0415289-8

Google Scholar

[4] Yamada Y, Multiple coexistence states for a prey-predator system with cross diffusion , J. Differential Equations 2004; 197: 315-348.

DOI: 10.1016/j.jde.2003.08.003

Google Scholar

[5] Chen XF, Qi YW, Wang MX, A strongly coupled predator-prey system with non-monotonic functional response, Nonlinear Analysis 2007; 67: 1966-(1979).

DOI: 10.1016/j.na.2006.08.022

Google Scholar

[6] Kadota T, Kuto K, Positive steady states for a prey-predator model with some nonlinear diffusion terms, J. Math. Aanl. Appl. vol. 323, 2006, pp.1387-1401.

DOI: 10.1016/j.jmaa.2005.11.065

Google Scholar

[7] N. Shigesada, K. Kawasaki, E. Teramoto, Spatial segregation of interacting species, J. Theoret. Biol. Vol. 79, 1979, pp.83-99.

DOI: 10.1016/0022-5193(79)90258-3

Google Scholar

[8] Choi YS, Lui R, Yamada Y, Existence of global solutions for the Shigesada Kawasaki-Teramoto model with strongly coupled cross-diffusion, Discrete Contin. Dyn. Syst. 2004; 10: 719-730.

DOI: 10.3934/dcds.2004.10.719

Google Scholar

[9] Dung L, Cross diffusion systems on n spatial dimension domains, Indiana Univ. Math. J. 2002; 51: 625-643.

Google Scholar

[10] Dung L, Nguyen LV, . Nguyen TT, Shigesada-Kawasaki-Teramoto mode on higher dimensional domains, Electron. J. Differential Equations 2003; 72: 1-12.

Google Scholar

[11] Lou Y, Ni WM, Wu Y, On the global existence of a cross-diffusion system, Discrete Contin. Dyn. Syst. 1998; 4: 193-203.

Google Scholar

[12] Yagi A, Global solution to some quasilinear parabolic system in population dynamics, Nonlinear. Anal. 1993; 21: 531-556.

Google Scholar

[13] Kan-on Y, Stability of singularly perturbed solutions to nonlinear diffusion systems arisin in population dynamics, Hiroshima Math. J. 1993; 23: 509-536.

DOI: 10.32917/hmj/1206392779

Google Scholar

[14] Kuto K., Stability of steady-state solutions to a prey-predator system with cross-diffusion, J. Differential Equations, 2004; 197: 293-314.

DOI: 10.1016/j.jde.2003.10.016

Google Scholar

[15] Wu Y., The instability of spiky steady states for a competing species model with cross diffusion, J. Differential Equations 2005; 213: l289-340.

DOI: 10.1016/j.jde.2004.08.015

Google Scholar

[16] Dancer EN, On the indices of fixed points of mappings in cones and applications, J. Math. Anal. Appl. 1983,; 91: 131-151.

DOI: 10.1016/0022-247x(83)90098-7

Google Scholar

[17] Dancer E N, On positive solutions of some pairs of differential equations, II, J. Differential Equations 1985; 60: 236-258.

DOI: 10.1016/0022-0396(85)90115-9

Google Scholar

[18] Dancer EN, On uniqueness and stability for solutions of singularly perturbated predator-prey type equations with diffusion, J. Differential Equations, 1993; 102: 1-32.

DOI: 10.1006/jdeq.1993.1019

Google Scholar

[19] Lin CS, Ni WM., I., Large amplitude stationary solutions to a chemotaxis systems, J. Differential equations, 1988; 72:. 1-27.

DOI: 10.1016/0022-0396(88)90147-7

Google Scholar

[20] Lou Y, Ni WM., Diffusion, self-diffusion and cross-diffusion, J. Differential Equations 1996; 131: 79-131.

DOI: 10.1006/jdeq.1996.0157

Google Scholar

[21] Pang PYH., Wang MX, Strategy and sationary pattern in a three-species predator-prey model, J. Differential Equations 2004; 200: 245-273.

DOI: 10.1016/j.jde.2004.01.004

Google Scholar

[22] Feng XZ, Equilibrium and long-term behavior of two kinds of biology model, Shaanxi normal universit y, Xi'an, (2010).

Google Scholar