[1]
Lucia D J, Beran P S, Silva W A. Reduced-order modeling: new approaches for computational physics. Progress in Aerospace Sciences, 2005(40): 51-117.
DOI: 10.1016/j.paerosci.2003.12.001
Google Scholar
[2]
Dowell E H, Hall K C, Thomas J P, Florea R. Reduced order models in unsteady aerodynamics. AIAA Paper 99-1261.
Google Scholar
[3]
Silva W. Identification of nonlinear aeroelastic systems based on the Volterra theory: progress and opportunities. Nonlinear dynamics, 2005(39): 25-62.
DOI: 10.1007/s11071-005-1907-z
Google Scholar
[4]
Romanowski M C. Reduced order unsteady aerodynamic and aeroelastic models using karhunen-loève eigenmodes. AIAA Paper 96-3981.
DOI: 10.2514/6.1996-3981
Google Scholar
[5]
Cai X D, Ladeinde F. A comparison of two pod methods for airfoil design optimization. AIAA Paper 2005-4912.
DOI: 10.2514/6.2005-4912
Google Scholar
[6]
Hall K C, Thomas J P, Clark W S. Computation of unsteady nonlinear flows in cascades using a harmonic balance technique. AIAA Journal, 2002, 40(5): 879-886.
DOI: 10.2514/3.15137
Google Scholar
[7]
Thomas J P, Dowell E H, Hall K C. Nonlinear inviscid aerodynamic effects on transonic divergence, flutter, and limit-cycle oscillations. AIAA Journal, 2002, 40(4): 638-646.
DOI: 10.2514/3.15109
Google Scholar
[8]
Johnson M R, Denegri C M. Comparison of static and dynamic neural networks for limit cycle oscillation prediction. Journal of aircraft, 2003, 40(1): 194-203.
DOI: 10.2514/2.3075
Google Scholar
[9]
Voitcu O, Wong Y S. Neural network approach for nonlinear aeroelastic analysis. Journal of guidance, control, and dynamics, 2004, 26(1): 99-105.
DOI: 10.2514/2.5019
Google Scholar
[10]
Silva W. Reduced-order models based on linear and nonlinear aerodynamic impulse responses. AIAA Paper 99-1262, (1999).
Google Scholar
[11]
Silva W. Recent enhancements to the development of cfd-based aeroelastic reduced-order models. AIAA 2007-2051, 48th AIAA/ASME/ASCE/AHS/ASC Structures, Strucural Dynamics, and Materials Conference, 23-26, April 2007, Honolulu, Hawall.
DOI: 10.2514/6.2007-2051
Google Scholar
[12]
Silva W, Raveh D E. Development of unsteady aerodynamic state-space models from cfd-based pulse responses. AIAA Paper 2001-1213.
DOI: 10.2514/6.2001-1213
Google Scholar
[13]
Raveh D E. Reduced-order models for nonlinear unsteady aerodynamics. AIAA Journal, 2001, 39(8): 1417-1429.
DOI: 10.2514/3.14885
Google Scholar
[14]
Balajewicz M, Nitzsche F, Feszty D. Application of multi-input Volterra theory to nonlinear multi-degree-of-freedom aerodynamic systems. AIAA Journal, 2010, 48(1): 56-62.
DOI: 10.2514/1.38964
Google Scholar
[15]
Cohen A, Daubechies I, Feauveau J C. Biorthogonal bases of compactly supported wavelets. Communications on Pure and Applied Mathematics, 1992, vol. XLV: 485-560.
DOI: 10.1002/cpa.3160450502
Google Scholar
[16]
Prazenica R J, Kurdila A J. Multiwavelet constructions and volterra kernel identification. Nonlinear dynamics, 2006, vol. 43: 277-310.
DOI: 10.1007/s11071-006-8323-x
Google Scholar
[17]
Kurdila A J, Prazenica R J. Multiresolution methods for reduced-order models for dynamical systems. Journal of guidance, control , and dynamics, 2001, 24(2): 193-200.
DOI: 10.2514/2.4707
Google Scholar
[18]
Prazenica R J, Lind R, Kurdila A J. Uncertainty estimation from volterra kernels for robust flutter analysis. Journal of guidance, control, and dynamics, 2003, 26(2): 331-339.
DOI: 10.2514/2.5050
Google Scholar