Synthesis and Properties of Hybrid Materials for Ion-Exchange and Complexing Membranes

Article Preview

Abstract:

Hybrid materials are attractive for a large range of applications from medicine and biotechnology to telecommunication systems and fuel cells. In the present research we have studied sol-gel synthesis of hybrid composites based on carbofunctional organosilicon monomers N,N-bis-(3-triethoxysilylpropyl) thiocarbamide (I) or 2-{[3-(triethoxysilyl) propyamino} pyridine (II), and copolymers of ethylene glycol vinyl glycidyl ether with vinyl chloride. The polymeric materials were characterized by scanning electron microscope (SEM) and IR-spectroscopy. Gel products possess high thermal stability (decomposition temperatures reach 250 °С) and have developed specific surface (to 20 m2g-1).The synthesized composites comprise semi-interpenetrating polymer networks, consisting of three-dimensional and linear polymers that cannot be separated due to the mechanical interlacing of theirs chains. Hybrid composites have a value of sorption capacity for Pt (IV) ions of 70 (I) and 28 (II) mgg-1. Proton conductivity of membranes based on the synthesized composites is characterized by the values 3.52 10-2 (I) and 1.19 10-2 (II) Scm-1 measured at temperature of 25 °C.

You might also be interested in these eBooks

Info:

[1] J. Luan, S. Wang, Z. Hu and L. Zhang: Current Organic Synthesis. Vol. 9 (2012), p.114.

Google Scholar

[2] I. M. El-Nahhal and N. M. El-Ashgar: Journal of Organomet. Chem. Vol. 962 (2007), p.2861.

Google Scholar

[3] H. Zou, S. Wu and J. Shen: Chemical Reviews. Vol. 110 (2008), p.3893.

Google Scholar

[4] C. J. Brinker and G. W. Scherer: Sol-Gel Science (Academic Press Inc., San Diego 1990).

Google Scholar

[5] Yu. Pozhidaev, O. Lebedeva, S. Bochkareva and E. Sipkina: Adv. Sci. Lett. Vol. 19 (2013), p.309.

Google Scholar

[6] Yu. Pozhidaev, N. Vlasova, I. Vasilyeva and M. Voronkov: Adv. Sci. Lett. Vol. 19 (2013), p.615.

Google Scholar

[7] O.V. Lebedeva, Yu. N. Pozhidaev, N. S. Shaglaeva, A. S. Pozdnyakov and S. S. Bochkareva: Theoretical Foundations of Chemical Engineering. Vol. 44 (2010), p.786.

DOI: 10.1134/s0040579510050258

Google Scholar

[8] M. G. Voronkov, N. N. Vlasova and A. E. Pestunovich: Russian Journal of General Chemistry. Vol. 68 (1998), p.770.

Google Scholar

[9] L. I. Belousova, N. N. Vlasova, Yu. N. Pozhidaev and M. G. Voronkov: Russian Journal of General Chemistry. Vol. 71 (2001), p.1879.

DOI: 10.1023/a:1014228023843

Google Scholar

[10] T. V. Raskulova, L. I. Volkova, V. N. Salaurov, R. M. Raskulov, A. K. Khaliulin and B. A. Trofimov: Russian Journal of Applied Chemistry. Vol. 71 (1998), p.1241.

Google Scholar

[11] Yu. N. Pozhidaev, O. V. Lebedeva, S. S. Bochkareva, N. S. Shaglaeva, L. V. Morozova and M. G. Voronkov: Russian Journal of Applied Chemistry. Vol. 81 (2008), p.1837.

DOI: 10.1134/s1070427208100248

Google Scholar

[12] Z. Marczenko: Separation and spectrophotometric determination of elements (Ellis Horwood, Chichester 1986).

Google Scholar

[13] Z. Marczenko: Separation, preconcentration and spectrophotometry in inorganic analysis (Elsevier, Amsterdam 2000).

Google Scholar

[14] M. G. Voronkov, V. P. Mileshkevich and Yu. A. Yuzhelevskii: The Siloxane Bond, Physical Properties and Chemical Transformations (Plenum Publishing Corporation, New York 1978).

DOI: 10.1080/00945717908069783

Google Scholar

[15] J. A. Mansonand and L.H. Sperling: Polymer blends and composites (Plenum Press, New York and London 1976).

Google Scholar

[16] N. V. Babkina, Yu. S. Lipatov, T. T. Alekseeva, L. A. Sorochinskaya and Yu.I. Datsyuk: Polymer Science. Ser. A. Vol. 50 (2008), p.798.

DOI: 10.1134/s0965545x08070109

Google Scholar

[17] Yu. A. Dobrovol'skii, E. V. Volkov, A. V. Pisareva, Yu. A. Fedotov, D. Yu. Likhachev and A.L. Rusanov: Russian Journal of General Chemistry. Vol. 77 (2007), p.766.

Google Scholar

[18] O. F. Mohammed, D. Pines, J. Dreyer: Science. Vol. 310 (2005), p.83.

Google Scholar